

Ethernet Alliance Panel #2: Bandwidth Growth and The Next Speed of Ethernet

Moderator: Scott Kipp, President of the Ethernet Alliance, Brocade Panelist #1: Vijay Vusirikala, Optical Network Architect, Google Panelist #2: David Ofelt, Distinguished Engineer, Juniper Panelist #3: Martin Pels, Senior Network Engineer, AMS-IX

DISCLAIMER

The views WE ARE expressing in this presentation are our own personal views and should not be considered the views or positions of the Ethernet Alliance.

AGENDA

- Introduction The Ethernet Alliance and Ethernet Speeds
 - Scott Kipp Brocade and President of the Ethernet Alliance
- Topic #1 Bandwidth Drivers and Core Requirements Large Data Center Perspective
 - Vijay Vusirikala Google
- Topic #2 Bandwidth Growth and the Next Ethernet Rate
 - David Ofelt Juniper Networks
- Topics #3 IXP Bandwidth Trends
 - Martin Pels Amsterdam Internet Exchange (AMS-IX)
- Questions and Answers

THE ETHERNET ALLIANCE

A global community of end users, system vendors, component suppliers and academia

<u>Our Mission</u>

- <u>To promote</u> industry awareness, acceptance and advancement of technology and products based on, or dependent upon, both <u>existing</u> and emerging IEEE 802 Ethernet standards and their management.
- <u>To accelerate industry adoption</u> and remove barriers to market entry by providing a cohesive, market responsive, industry voice.
- Provide resources to establish and <u>demonstrate multi-vendor</u> interoperability.

Activities

•

- Promote marketing and education awareness
- Interoperability testing and demonstration
- Industry consensus building
- Technology and standards incubation
- For more information see <u>www.ethernetalliance.org</u>

ETHERNET ALLIANCE STRATEGY

Expand Ethernet Ecosystem

- Facilitate interop testing
- Expand the market
- Go global

Support Ethernet Development

- Support consensus building
- Host Technology Exploration Forums (TEFs)
- Team with other orgs

Promote Ethernet

Marketing

Education

UNIVERSITY	ethernet alliance		
 Completed an Planned Concept 	d available online Ethern Over	et 101: rview	
Physical Layer	Protocols	Applications	Informational
x00 Series	x10 Series	x20 Series	x50 Series
Ethernet 102:	Ethernet 111:	Ethernet 121:	Ethernet 151:
The Physical	802.1:Protocols	The Applications	Ethernet
Layer Of Ethernet	Of Ethernet	Of Ethernet	Alliance Plugfests
Ethernet 202:	Ethernet 211:	Ethernet 221:	Ethernet 231:
10GBASE-T	Data Center	Ethernet	IEEE
Revamped	Convergence	Products	Projects
Ethernet 301: 40/100GbE Fiber Cabling and Migration Practices	Ethernet 311: Multi-tenancy	Ethernet 321: Industrial Applications	Ethernet 331: Ethernet Alliance Website

Bandwidth Assessment Report

- The IEEE quantified bandwidth growth in a new report that was released in July:
- <u>http://www.ieee802.org/3/ad_hoc/bwa/index.html</u>
- A basic equation for growth is:

More X More X More Users X Devices X Bandwidth

	Users	Internet Devices	Broadband Speeds	Total IP Traffic
2011	2.0 B	10B	9.1 Mbps	31 EB/ Month
2016	3.4B	19B	34 Mbps	110 EB/ Month

B = Billion, EB = Exabyte = A Billion Terabytes

Source: http://www.cisco.com/web/solutions/sp/vni/vni forecast highlights/index.html

IP Traffic Growth by Access Technology

Source: nowell_01_0911.pdf citing Cisco Visual Networking Index (VNI) Global IP Traffic Forecast, 2010–2015, http://www.jeee802.org/3/ad hoc/bwa/public/sep11/nowell 01 0911.pdf

© 2012 Ethernet Alliance

Source: http://www.ieee802.org/3/ad hoc/bwa/public/dec11/dart 01 1211.pdf

Source: Dell'Oro Ethernet Switch Forecast Report, July 2012

Bandwidth Capacity Projections

Ethernet Capacity Shipped* (Millions of Gbps)

Over 1 Billion Gbps shipped in 2016!

- 100 Gigabit Ethernet
- 40 Gigabit Ethernet
- 10 Gigabit Ethernet
- Gigabit Ethernet

Fast Ethernet

*Ethernet capacity calculated by multiplying ports on previous page by their bandwidth.

Source: Dell'Oro Ethernet Switch Forecast Report, July 2012

AGENDA

- Introduction The Ethernet Alliance and Ethernet Speeds
 - Scott Kipp Brocade and President of the Ethernet Alliance
- Topic #1 Bandwidth Drivers and Core Requirements Large Data Center Perspective
 - Vijay Vusirikala Google
- Topic #2 Bandwidth Growth and the Next Ethernet Rate
 - David Ofelt Juniper Networks
- Topics #3 IXP Bandwidth Trends
 - Martin Pels Amsterdam Internet Exchange (AMS-IX)
- Questions and Answers

Bandwidth Drivers and Core Requirements – Large Data Center Perspective

Vijay Vusirikala For Google Network Architecture

Ethernet Alliance – Sep 2012

Network Growth and Scale Drivers

- Growth and scaling at various layers
 - Datacenter connectivity, metro /edge and Longhaul/core
 - Different drivers and applications for different parts of the network
 - Overall growth across all segments → Driving need to higher capacity fabric, client connectivity and core capacity

More Data

Centers

• Growth drivers

More

Bandwidth

/ Server

- Obvious ones more users, more uses (User facing traffic)
- More bandwidth intensive applications (User facing traffic)
- Machine count and connectivity increases (M2M traffic)

More

Servers /

Data

Center

Example of Applications Driving Scale

- You Tube Growth
 - 4 billion+ views a day up over 30% in the last eight months
 - 800M unique users visit YouTube each month
 - 4B hours of video watched per month
 - More video uploaded to YouTube in a day than all 3 major US networks broadcast in the last 3 years
 - Over 72 hrs of video uploaded every minute--doubling y/y

Warehouse Scale Computers - Machinery

Google

Datacenter Optics - Overview

Google

Google's WAN

- Two backbones
 - Internet facing (user traffic)
 - smooth/diurnal
 - externally originated/destined flows
 - Datacenter traffic (internal)
 - bursty/bulk
 - all internal flows
- Widely varying requirements: loss sensitivity, availability, topology, etc.
- Difference in node density, degree and geographic placement thus: built two separate logical networks
 - o I-Scale
 - G-Scale

Google's Datacenter WAN

Software Defined Optical Network

Software Defined Network Extending to Transport Layer

- Future software-defined networking
 - Single network operating system with standardized interface
 - Global network view
 - Optimizing for services
 - Consolidated forwarding/transport layer

Control Plane

Thank You

Vijay Vusirikala

vijayvusiri@google.com

or look me up on LinkedIn

AGENDA

- Introduction The Ethernet Alliance and Ethernet Speeds
 - Scott Kipp Brocade and President of the Ethernet Alliance
- Topic #1 Bandwidth Drivers and Core Requirements Large Data Center Perspective
 - Vijay Vusirikala Google
- Topic #2 Bandwidth Growth and the Next Ethernet Rate
 - David Ofelt Juniper Networks
- Topics #3 IXP Bandwidth Trends
 - Martin Pels Amsterdam Internet Exchange (AMS-IX)
- Questions and Answers

Bandwidth Growth and the Next Ethernet Rate

David Ofelt Distinguished Engineer Juniper Networks 2012-09-17

© 2012 Ethernet Alliance

Bandwidth Growth

Why not LAGs?

- Instead of faster links- why not just aggregate multiple links
- This is what everyone does but...
 - Exponential Bandwidth Growth means
 Exponential Growth in numbers of links
 - Inefficient due to imperfect load-balancing
 - Limited entropy
 - Flows are balanced ignoring bandwidth
 - Large flows exist
 - CDN
 - Encrypted traffic
 - Opaque trunks
- http://www.ieee802.org/3/hssg/public/may07/muller_01_0507.pdf

Constraints

- Need more bandwidth, but at what cost?
- Message from 100G is that new interface needs parity at introduction in:
 - Cost per Gb/s
 - Power per Gb/s
 - Density per Gb/s
- Customers were willing to compromise to save money
 - Ex: 10x10 "Ethernet" interface –vs- LR4

So... what speed?

- So we need a faster Ethernet, but what speed?
- Question is often phrased "400GbE or 1TbE"?
 This ignores cost/power/density/physics
 - This ignores cost/power/density/physics
- Reality is that 1TbE is currently impractical
 - Forwarding Engine scales poorly
 - Module connector has too many signals
 - Practical optics not demonstrated

400GE

- 400GbE looks practical and useful
- Industry producing dense 100GE engines
- Good building blocks
 - 802.3ba MAC and PCS
 - 802.3bj FEC and EEE framework
 - Potentially enhancements from 802.3bm
- Optical building blocks from 100GE roadmap

AGENDA

- Introduction The Ethernet Alliance and Ethernet Speeds
 - Scott Kipp Brocade and President of the Ethernet Alliance
- Topic #1 Bandwidth Drivers and Core Requirements Large Data Center Perspective
 - Vijay Vusirikala Google
- Topic #2 Bandwidth Growth and the Next Ethernet Rate
 - David Ofelt Juniper Networks
- Topics #3 IXP Bandwidth Trends
 - Martin Pels Amsterdam Internet Exchange (AMS-IX)
- Questions and Answers

IXP bandwidth trends

ECOC

Amsterdam, 17 September 2012

martin.pels@ams-ix.net

Internet Exchange Point?

What is an

- Formal definition: "A physical (Ethernet based) network infrastructure operated by a single entity whose purpose it is to facilitate the exchange of internet traffic between Internet Service Providers. There must be a minimum of three ISPs connected."
- Purpose:
 - Save on (transit-) cost
 - Optimize IP data path between providers

(keep local traffic local)

Simplify interconnection between many providers

European IXP traffic sterdam internet exchange

Peak traffic increase of 33% per 12 months

- 12 times increase of IXP peak traffic between December 2006 and December 2011
- Exponential trend suggests 90 Tbps in 2016

About AMS-IX

- Non-profit association, founded in 1997
- 515 connected ASNs, 991 customer ports
- Metro Ethernet platform
- MPLS/VPLS architecture
- GE, 10GE, and 100GE connections
 - Aggregated links
 - Lower speed connections via resellers

Topology

42

Traffic

Traffic

44

- Daily traffic volume: 10.8 Pbyte/day
- Traffic doubling every ~2.5 years (30%/year)

Ports

- >70% of 10GE ports in aggregated links
- Largest aggregate: 16*10GE

100GE @ AMS-IX amsix amsterdam internet exchange

- Two customers connected (using MSA 10x10-2km)
- 24 100GE connections in backbone
 - 16 of which in aggregates of 2x100GE
- Metro transport (<40km):</p>
 - In-house design based on 100GE-LR4 + SOA
 - Proprietary solution: MSA 10x10 + ADVA WDM (4x100GE over single fiber)

Our wishlist

- Double density 100GE (CFP2/4) in 2013/2014
- 16*100GE over single fiber (<40km)
- 400GE in 2015
 - If economically feasible (max 2.5*100GE)
- Terabit Ethernet: ~2020

Summary

- IXP traffic is growing at a high rate
- 10GE aggregation > 10*10GE
- 100GE adoption slowly picking up
 - Link aggregation used almost from day 1
- 400GE desirable, but needs to be cost-efficient
- Need for Terabit Ethernet is expected

DISCUSSION/Q&A

Thank you

© 2012 Ethernet Alliance