100GbE Lambda Switching for Data Center Networks

Nathan Farrington CEO
Packetcounter, Inc.
nathan.farrington@packetcounter.com

How to get to 100G?

Bit rate, $\mathrm{R}=x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5}$

- x_{1}, number of fiber pairs (e.g. 1, 4, 10)
- x_{2}, number of wavelengths (WDM, e.g. 1-80)
- x_{3}, number of polarizations (PDM, e.g. 1, 2)
- x_{4}, modulation order (bits per symbol, e.g. 1, 2, 4)
- x_{5}, signaling rate (symbols per second)

Getting to $\mathrm{R}=100 \mathrm{G}$

	\boldsymbol{X}	X	X	\boldsymbol{X}	\boldsymbol{X}	
1	10	1	1	1	10G	100GBASE-SR10
2	4	1	1	1	25G	100GBASE-SR4
3	1	4	1	1	25G	100GBASE-LR4
4	4	1	1	1	25G	$100 \mathrm{GPSM4} 4 \mathrm{MSA}$
5	1	4	1	1	25G	$100 \mathrm{G} \mathrm{CWDM4} 4$ MSA
6	1	1	1	1	100G	Possible future 1 of 6
7	1	1	2	1	50G	Possible future 2 of 6
8	1	1	1	2	50G	Possible future 3 of 6
9	1	1	4	1	25G	Possible future 4 of 6
10	1	1	1	4	25G	Possible future 5 of 6
11	1	1	2	2	25G	Possible future 6 of 6

Where do data centers need 100G?

How could data centers use 100G lambdas?

100G optics is cheap;
400G packet switch ports are expensive

Latency-sensitive traffic

- Remote procedure calls
- Database queries
- Telemetry
- Logging

Throughput-sensitive traffic

- Video
- Big data
- Replication
- Virtual machine cloning
- Virtual machine migration
- Backup

Optical TDMA Switch

George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang-Chen Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. "Integrating Microsecond Circuit Switching into the Data Center". In ACM SIGCOMM 2013.

Nathan Farrington, Alex Forencich, Pang-Chen Sun, Shaya Fainman, Joe Ford, Amin Vahdat, George Porter, and George Papen.
"Invited Paper: A $10 \mu \mathrm{~s}$ Hybrid Optical-Circuit/Electrical-Packet Network for Datacenters". In OFC 2013.

Traffic Matrix Scheduling

Summary

- Six possible futures for single-wavelength 100G
- 100G single-wavelength transceivers will be available before 400G four-wavelength transceivers
- 100G single-wavelength transceivers are best used with an optical TDMA switch

