

Who's afraid of the Big, Bad DSP?

Implementation of Advanced Modulation for Single-Lambda Short-Reach Optical Interconnects

Paul Little Fujitsu Semiconductor America, Inc.

Ethernet Alliance 100GbE per Lambda for Data Center Workshop – June 12th 2014

100G Single-Lambda for Datacenter

- Why bother with 100G Single-Lambda?
 - Because network capacity isn't going down...
 - Reduction of optical component count needed to reduce cost
 - Cost-effective building block needed for next generation 400G and beyond
- Straw Polls from Norfolk IEEE 802.3 interim meeting indicated strong interest in single lambda solutions for 400GbE for 2km reach.

Strawpoll #5 (Chicago Rules)	Strawpoll #6 (Chicago Rules)			
For 2km duplex SMF 400GbE PMD, I believe the TF	For 10km duplex SMF 400GbE PMD, I believe the TF			
should select a proposal based on an effective bit	should select a proposal based on an effective bit			
rate per wavelength per direction of	rate per wavelength per direction of			
a) 25G $1+1+3 = 5$	a) 25G 2+1+2 = 5			
b) 50G $16+17+18=51$	b) 50G 14+19+20 = 53			
c) 100G $23+24+30 = 77$ T	c) 100G 24+22+28=74			
d) 400G $4+4+2 = 10$	d) 400G 4+2+5 = 11			

DSP for 100G Single-Lambda

FUĴITSU

- DSP can offer a cost effective solution to increase link capacity
 - 100G NRZ single lambda optics are a few years away ...
 - QSFP28 target form factor for 100G and possibly 400G in the future
 - DSP needed to meet power, cost and TTM requirements
- DSP shifts the complexity into the silicon
 - CMOS DSP implementations are predictable, scalable and cost effective
 - Decades of experience using advanced modulation in other applications
- Significant achievements in DSP power reduction in past few years
 - Courtesy of coherent transceivers for long-haul optical transport
 - Power reduction already driving 100G Coherent Metro devices into CFP module
- Noise and thermal issues have already been solved for long haul
- "Big, scary" DSPs are already lurking in your home
 xDSL, brought to you by DMT (the little modulation format that could...)

DSP for 100G Single-Lambda Options

- Options for Single Lambda
 - DP-QSPK
 - OFDM
 - PAM-8
 - PAM-4
 - Discrete Multi-Tone (DMT)
 - Others....?

This presentation will focus on DSP using Discrete Multi-Tone (DMT) and PAM-4

Discrete Multi-Tone Quick Overview

- DMT uses a series of uniformly separately subcarriers (e.g 256) to transmit data, where each subcarrier uses QAM-n modulation
- Level of modulation is adjusted based on the available SNR within each subcarrier to maximize the number of bits per symbol within that subcarrier
- Transmitter and Receiver communicate to determine optimal settings for transmission
- Flexible modulation on each of the subcarriers allows DMT to compensate for link impairments and achieve the best use of the available signal channel bandwidth and SNR
- Frequency domain calculations with efficient iFFT & FFT implementations
- Transmit data is assembled in the frequency domain before passing through an iFFT and high speed DAC
- Receive DMT data is captured using a high-speed ADC, converted back into the frequency domain via FFT where subcarrier amplitude and phase are mapped into received data

DMT Link Negotiation & Communication

FUJITSU

- 2 fixed location subcarriers are used to create a Link Communication Channel (LCC)
- DMT requires initial negotiation between the Tx and Rx on startup
- Tx sends known pilot tones (fixed constellation and bit sequence) for probing channel SNR via EVM across all 256 subcarriers
- Rx analyzes SNR and exchanges back bit allocations tables with Tx over LCC channel
- Target link negotiation time around 10ms

Advantages of DMT Technology for 100G

- Maximizes number of allocated bits for any given channel
 - High spectral efficiency (max bits for channel at low baud rate)
 - Reduces required bandwidth by stuffing the most bits into the lower frequencies
- Adaptive bit allocation for each subcarrier with low baud rate
 - Relaxes requirements on shape of channel frequency response
 - Doesn't need to be flat across the entire band
- Robust modulation scheme
 - More immune to channel reflections, ISI and crosstalk
- Comparable implementation complexity to that of xDSL (just a little faster!)
 - Excellent for IC development
 - Well known, efficient Digital Processing techniques (FFT, IFFT)
 - DMT Algorithms easily handled in non-realtime
 - Low power and latency

DMT Electrical B2B Measurements

Initial optical experiments using 28nm converters presented, work in progress

Plots show 256 subcarriers, Cyclic Prefix of 16 Bit rate measured at FEC threshold of 1e-3

Optical Transmission Experiments (40nm) Fujirsu

Single DMT transceiver can cover multiple transmission distances and meet the input BER target for BCH FEC

100G DMT Transceiver IC Overview

Single chip integrated CMOS transceiver

- Low cost, low loss 10mm x 10mm SHDBU package for QSFP28 module integration
- 3.5W in 28nm (silicon measurement, synthesis and layout results) CFP4 OK.
- 1.8W in 14nm (estimated)

DMT IC Complexity

ltem		100G Coherent (DP-QPSK)	100G DMT	Notes
ADC	Channels	4	1	Direct detection
	Sample Rate	64GSa/s	58GSa/s	
	ENOB	>4.5	>5	ENOB/Bandwidth combination is key
DAC	Channels	4	1	
SerDes	4-lane (28Gbps)	CEI-28G-SR/MR	CEI-28G-VSR	
DSP	Logic Gate Size	~30-50M	5M	Optimized hard-wired FFT/iFFT. Based on 28nm design
FEC	Туре	SD (CI-BCH)	BCH	
	Coding Gain	11-12dB	8.7dB	
	Line Rate OH	20%	12.5%	
	Latency	< 10 us	< 150ns	
	Gate Count	~20M	0.75M	

DSP for DMT is $< 1/10^{\text{th}}$ size of a coherent DSP

100G DMT Transceivers

- Can support multiple PMDs for 500m, 2km, 10km.....
- Can potentially support flexible line rates (25G,50G,75G,100G)

100GbE module (SR/LR/ER)

Mature CMOS process, 28nm IC power dissipation estimate: 3.5 W

100GbE module (SR/LR/ER)

Next generation CMOS process, 14nm IC power dissipation estimate: **<1.8W**

400G DMT Transceivers

FUĴĨTSU

- Can support optical PMDs for 500m, 2km, 10km.....
- Can potentially support flexible line rates
- 4 x 1-ch 100G transceivers or dedicated 4-ch 400G transceiver
- Host-based transceiver provides opportunity for delivering 400G in a QSFP+ form factor
 - Optics only inside QSFP+ module, with 100G DMT electrical interface
 - 116Gbps electrical interface from chip to module through connector may not be possible with PAM-4, PAM-8
 - Further experiments necessary, but B2B electrical results already show good feasibility

Addressing Concerns on DMT

- "DMT is overkill for optical transmission as the channel is flat"
 - It's not just about the optics: The electrical channel is a factor @ 56Gbaud
 - ADC & DAC have non-flat responses
 - Electrical discontinuities can close a PAM-4 eye requiring further equalization
 - PAM4 is more susceptible to reflections and overshoot/ringing in the channel.
 - Channel includes the chip, package, PCB, laser driver, TIA.
 - 1 baud (18ps) is about 3mm so delayed reflections can fall outside the span of a low-power digital equalizer ... more taps mean more power
 - Matching (S11) of all components up to around 35-40GHz instead of maybe 20GHz
 - PAM-4 needs roughly constant SNR across the full bandwidth
 - DMT adjusts the modulation complexity to the available SNR
 - The majority of bits are loaded into lower subcarriers, where SNR is generally higher
- "DMT's link negotiation is too complicated"
 - Link negotiation handshaking protocol is not complex (see Page 5) .. just new
 - Link negotiation needs minimal processing using on-chip ARM[™] CPU

"DMT is more susceptible to non-linearities and requires use of Volterra NLC"

- Experiments show that NLC may not actually be necessary for <2km links</p>
- Experiments show NLC can be used effectively to achieve 40km

Addressing Concerns on DMT

"Implementation of FFT & iFFT is 10x more complex than FFE for PAM-4"

- FFT & iFFT can be efficiently realized
 - 6 "scaling" operations per sample multiplication by hardcoded constants
 - Lower clock frequency (e.g F_s /528) translates to lower overall power
- FFE requires real multipliers with programmable coefficients
 - N-tap FFE needs N-real multipliers per sample.
 - Parallelism needed to reduce clock rates (e.g. N*64 multipliers needed for F_s/64)
- "Where's my eye diagram and how do I test this?"
 - Optical Modulation Analyzers supporting QAM & OFDM can be software-upgraded to support DMT to provide relevant statistics and measurement data
 - Further discussion with test & measurement vendors is needed on requirements
- *"I need multiple sources for modules/transceivers"*
 - Several IC companies have announced ADC/DAC technology that could readily be adapted for DMT transceiver designs...if they choose to do so.

Raising Concerns on PAM-4

- Baud Rate Sampling Timing and Clock recovery loop
 - All experiments are based on offline processing of data
 - How to reliably and cost effectively (power) do this @ 56Gbaud?

ADC & DAC Bandwidth Requirements

- Most if not all experiments with 28 & 56Gbaud PAM-4 use high performance DSOs
- 33GHz bandwidth requirement is not easy to achieve without power penalties

Equalization Requirements

- Complexity varies over the various studies, unclear on the power implications
- Assumptions on EQ also based on extremely high BW ADC & DAC (see above)
- MLSE looks promising, but timing & clock recovery still needs to be addressed

Optical Component Bandwidth Requirements

...

Bandwidth Requirements (PAM-4)

- 40/56G optics will be required
- ADC with 33GHz front-end bandwidth is very challenging
 - Should not be underestimated...even with reduced resolution
 - Increase in equalization complexity will be needed to compensate for lower bandwidth
- 33GHz Packaging & PCB should also not be neglected
 - Insertion and return loss in package double from 15GHz-30GHz
- Bandwidth is never free!
 - Need to carefully review and consider the power & cost implications of these higher bandwidth requirements

Bandwidth Requirements (DMT)

- 25G optics (and less) can be used
- Existing ADC & DAC (28nm) can already generate 170Gbps electrical back-to-back transmission (@ BER 1e-03) over "bandwidth limited components"
 - Increases in bandwidth due to process node migration will add more margin (excess capacity)
- Packaging & PCB losses @ 16GHz-20GHz manageable
- Bandwidth is never free!
 - Lower Bandwidth requirements should reduce overall system complexity & cost

Complexity Summary

Item		PAM-4 (56Gbaud)	DMT	Notes
ADC	Sample Rate	56GSa/s *1	58GSa/s	*1 Baud rate sampling may increase complexity in timing recovery loop
	ENOB	4 *2	> 5	*2 >4-bits needed for post- ADC equalization?
	Bandwidth	33GHz *3	18GHz	*3 Experimental results all use high-bandwidth DSOs
DAC	Sample Rate	56GSa/s ? *4	58GSa/s	*4 Pre-emphasis can impact sample rate and resolution
	ENOB	2?*4	> 5	
	Bandwidth	> 30GHz ?	16GHz	
SerDes	4-lane 28Gbps	CEI-28G-VSR	CEI-28G-VSR	
FEC	Coding Gain	~9dB	~8dB	
DSP	Logic Gate Size	3-5M *5	5M	*5 Equalizer implementation?
Linear TIA		40G/56G class	< 25G class	
Linear Driver		40G/56G class	< 25G class	
Laser (EML)		40G/56G class	< 25G class	

Post 100G/lambda...

- 100G/lambda is expected for 400Gbps, but what about 1Tb?
- Higher-order modulation will be required for 400G and 1Tb transceivers
- Low-power coherent DP-QSPK single wavelength 400Gbps already being proposed for short-reach applications
 - Proven technology and modulation format, power reduction key
- Key building blocks for all will be the same
 - High speed ADC, DAC & DSP
- All of this could be realizable with the next generation of converter technology and low power CMOS process nodes

Summary

- 100G/lambda is readily achievable through use of modulation and ADC/DSP/DAC architectures
 - CMOS technology can offer performance and cost advantages
- Implementation of DSP solutions is not a concern
 - Silicon issues already solved for coherent long-haul
 - Can help decrease complexity in the optics
- Both PAM-4 and DMT can provide solutions for 100Gbps/lambda
 - DMT offers potentially the lowest cost solution due to significantly lower bandwidth requirements across the entire signal chain
 - PAM-4 increases complexity in both silicon AND optics
 - DMT increases complexity in silicon but allows usage of 10G/25G-class optics
 - DMT works with today's technology allowing optimization with tomorrow's technologies
- Bandwidth requirements need to be carefully considered
 - Bandwidth isn't free, there are always tradeoffs
 - Lower bandwidth generally equals lower cost and power
 - Focus should not only be on just the DSP silicon, but all components

FUJTSU

shaping tomorrow with you