

FLEXIBLE INTERFACES IN TRANSPORT NETWORKS

Steve Trowbridge October 16, 2014

Alcatel · Lucent

OPTICAL TRANSPORT NETWORK CHARACTERISTICS

- Tend to have large geographic scope beyond the LAN. >>10km to worldwide, links as long as 12000km (trans-Pacific)
 - Optically Amplified Systems (often EDFA or RAMAN based) longer reach links may be more amplifiers in the chain and not necessarily a different Tx/Rx. Signal impairment (e.g., Polarization Mode Dispersion) is more significant than attenuation.
 - Unlike client interfaces, generally NOT within the eye safety limit: different installation and maintenance practices, Automatic Laser Shutdown
 - Interoperable metro interfaces currently up to 10G (40G and 100G standardization underway). Long Haul interfaces, and today, 40G and 100G metro interfaces are <u>SINGLE</u> <u>VENDOR</u>. Modulation, amplification, dispersion accommodation, FEC, DSP algorithms are all "knobs" the vendor can work with to get a link to work.
 - Beyond certain metro interfaces, nearly everything is an engineered link.
 - Basic frame formats, client mappings are standardized so that vendors and operators can interconnect over shorter reach and client/inter-domain interfaces
- Multi-layer networking technology defined: not every network uses all of the tinker-toys in the box or does switching and grooming at every layer where switching and grooming is possible:
 - Some networks use TDM multiplexing and switching to carry multiple smaller-rate clients per wavelength
 - Some networks switch only at the optical layer (e.g., using ROADMs or other WSS)
- Some networks don't switch at all just point-to-point DWDM line systems Alcatel·Lucent

CURRENT FLEXIBLE RATE MECHANISMS IN OPTICAL TRANSPORT NETWORKS

"Sub-rate" mechanisms with OTN TDM multiplexing

- Transport network doesn't see this LAG distributor and aggregator are in the Ethernet Endpoints
- LAG is good for large aggregates of small flows. Sub-optimal when some flows are large, and doesn't work at all with a flow that exceeds the capacity of a LAG group member Alcatel·Lucent

"FLEXIBLE" RATE LINE INTERFACES -WHAT'S UP WITH THAT??

- Most 40G, and virtually all 100G (and above) line interfaces use complex modulation formats (not NRZ, multiple bits per symbol)
- Many common modulations are in a family of dual-polarization coherent optical signaling which creates symbol "constellations" through polarization multiplexing, phase modulation, and (with linear drivers) amplitude. As these are DSP-driven, some hardware can produce and detect multiple different modulation formats

Alcatel · Lucent

EXAMPLE MODULATION FORMATS - PER LAMBDA

Modulation	Bits/Symbol	Baud Rate*	Bit-rate per lambda	Approximate Reach		-0-
DP-BPSK	2	25Gbaud	50 Gb/s	12000 km	ľ	
DP-QPSK	4	25Gbaud	100 Gb/s	4000 km		
DP-8QAM	6	25Gbaud	150 Gb/s		000	Ø ₁₀
DP-8QAM	6	33.3Gbaud	200 Gb/s		2	
DP-16QAM	8	25Gbaud	200 Gb/s	1000 km		(1,1)

* Not including FEC - typically 7-20% depending on reach

- The modulation format is selected during link engineering, primarily based on the reach required.
- Not "dial-a-rate": you can't "turn up" your San Francisco to Chicago link from 100G DP-QPSK to 200G DP-16QAM because you can't move San Francisco and Chicago closer together!
- Digital clients don't necessarily match lambda rate: 200G DP-16QAM might carry two OTU4 each carrying 100GbE, or one OTU4 might be carried over two sub-carriers of DP-BPSK
- Key advantage that it allows common spares for a variety of link distances: not that the rates of existing links are changing
- As these are single-vendor interfaces, the modulation formats and bit-rates supported by any given vendor may not be the same (a few rates may be common

0000

 \bigcirc

0011

01 00

01 01

0110

1100

 \bigcirc

1101

 \bigcirc

0 0

KEY QUESTION:

• Can flexible rates of Ethernet be used to efficiently fill the variety of lambda rates that are available in single-vendor interfaces on the line side?

THANKS!

