50Gb/s Per Lane: The Next Technology Rate

The Rate Debate Technology Exploration Forum 16 October 2014 Santa Clara, CA Chris Cole

IEEE 400G Ethernet Rate/Modulation Debate

Historical Rate Progressions

Data Rates Gb/s:

- Telecom: $0.16 \rightarrow 0.62 \rightarrow 2.5 \rightarrow 10 \rightarrow 40 \rightarrow 100 \rightarrow 100 \rightarrow 400/Flex$
- Ethernet

 $1 \rightarrow 10 \rightarrow 100 \rightarrow 40 \rightarrow 400 \rightarrow 25 \rightarrow 2.5/5.0 \rightarrow 50$

Storage (Fibre Channel)

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 16 \rightarrow 32 \rightarrow 128 \ (4x) \rightarrow 64$

InfiniBand (4x)

 $32 \rightarrow 56 \rightarrow 100 \rightarrow 200$

Mainstream Technology Lane Rates Gb/s:

$$\bullet \quad 1 \to 2.5 \to 5 \to 10 \to 25 \to 50$$

Historical IEEE Ethernet SMF λ Rate Debates

Ethernet Rate	10G	40G	100G	400G
Task Force	802.3ae	802.3ba	802.3ba	802.3bs
Project years	1999-2002	2006-2010	2006-2010	2013-
Existing optics	OC192	OC768	OC768	LR4
Existing λ rate	10G/λ	40G/λ	40G/λ	25G/λ
Existing I/O rate	2.5G (3G)	10G	10G	25G
Predicted next I/O (SerDes) rate	10G	25G	25G	50G
λ rate debate	4x3G/λ v. 1x10G/λ	4x10G/λ v. 1x40G/λ	10x10G/λ v. 4x25G/λ	8x50G/λ v. 4x100G/λ
Market Winner	10G/λ	10G/λ	25G/λ	50G/λ

802.3 SMF PMD λ Rate Debates Observations

- 802.3 λ rate debates were always between rates in existing client optics
- 802.3bs SMF PMD λ rate debate breaks this precedent by considering rate (100G/λ) not in existing client optics
- 802.3ae 10G SMF PMD λ rate debates:
 - adopt existing vs. next I/O (SerDes) rate for optics
- 802.3ba 100G SMF PMD λ rate debates:
 - adopt existing vs. next I/O (SerDes) rate for optics
- 802.3ba 40G SMF PMD λ rate debate:
 - adopt existing vs. many years out I/O (SerDes) rate
 - $40G/\lambda$ argument: 1 laser is low cost & CMOS is free
- 802.3bs 400G SMF PMD λ rate debate
 - adopt next vs. many years out I/O (SerDes) rate
 - 100G/λ argument: 4 lasers are low cost & CMOS is free

40G Serial Example of Premature Standard

- 40G Serial Client OC768 and G.693 spec. in late 90s
- Based on assumption that client interfaces should be serial $156M \rightarrow 622M \rightarrow 2.5G \rightarrow 10G \rightarrow 40G$
- Bleeding edge component limitations drove specifications
 Ex. -5dBm RX sensitivity limit resulted in bad specs.
 - 1550nm λ
 - 1dB CD Penalty
 - Required changing CD penalty after many years of futile attempts to make production parts
- Nightmare to design and manufacture modules
 - Transistor fT = 110GHz
 - Interconnect technology: GPPO
 - Packaging technology: gold boxes for optics and ICs
- Today's 100G/λ technology is similarly bleeding edge

1st 40G Serial Module on Eval Card c. 2003

Next Technology Rate Application Feasibility

Application Support Feasibility	50G NRZ or PAM-4	100G PAM-4 or DMT
400G 10km & High-Loss duplex SMF	Yes	No
400G 2km duplex SMF	Yes	No
400G 500m PSM4	Yes	Yes
400G Next Gen MMF	Yes	No
100G Next Gen SMF	Yes	Yes
100G Next Gen MMF	Yes	No
50G Serial SMF & MMF	Yes	No
40G Serial SMF & MMF	Yes	No
64x Fibre Channel	Yes	No
50G per lane Electrical I/O	Yes	No
50G per lane Backplane & Cu Cable	Yes	No

400G (8x50G λ) SMF PMD Example

16 October 2014

200G (2x 2x50G λ) SMF PMD Example

QSFP & CFP4 dual 100G module

40/50G (Serial λ) MMF PMD Example

4x XLAUI-1 4x 40GbE-SR QSFP quad 40/50G (160/200G) module SFP 40/50G single lane module

16 October 2014

100G SMF PMD Power

	Gen 1 LR4 CFP discrete EML:	20W
	Gen 2 LR4 CFP2 DML or MZ:	6W
	Gen 3 LR4 CFP4 DML:	4W
	Gen 4 LR4 QSFP28 DML:	3.5W
	Gen 4 CWDM4 QSFP28 DML:	3W
•	 Next Gen CWDM2 (2x50G/λ) MZ or DML Target: Enables dual 100G (200G) QSFP and CFP4 	2W
•	Current 100G/λ proposals, even w/ advanced CMO best match power of current LR4 or CWDM4 QSFP	S, at 28
	 Not compelling 	
	100G/λ Compelling Target: 1W	/

• Enables 100G SFP and quad 100G CFP4 and QSFP

Example of Fast Changing Technology

History of PAM-N Proposals

100G/400G Standards Today are for >2020

Track record of predicting technology many years our is poor

$50G/\lambda$ is the Right Next Step

- Same reason that crooks rob banks:
 - It's where the money is
 - Equivalently it's where the volume is
- Manageable optics technology risk
- Leverages next high-volume mainstream technology rate
- Optimally connects to 50G I/O
- Multiple applications that drive shared volume
 - 400G SMF & MMF
 - 2x density increase duplex SMF and MMF 100G
 - 4x density increase duplex SMF and MMF 40/50G
 - 64xFC
- Technology is sufficiently understood to standardize

$100G/\lambda$ is >2020 Solution

- Standardization today is premature
 - Bleeding-edge optics negate architecture advantage
 - No power advantage over today's approach $(4x25G/\lambda)$
 - Skips next high-volume mainstream I/O rate (50G)
 - Niche application and rate for many years (>2020)
- Standardization will be done in the future when there is:
 - Optics experience
 - Mature components
 - Compelling power (ex. 1W/100G)
 - 100G electrical I/O architecture and volume visibility
 - Multiple application volume to drive down cost
- Best way to derail promising advanced technology is to lock down today's incomplete understanding in a standard

50Gb/s Per Lane: The Next Technology Rate

Thank you

16 October 2014