NEXT GENERATION TUNABLE TECHNOLOGY AND APPLICATIONS #### Introduction - Over the last 10-15 years the adoption of tunable based solutions has grown significantly. - Innovation at the chip level has helped drive smaller size, lower power and lower costs and enabled products such as tunable XFP and tunable SFP+. - Tunable lasers is an area of significant investment and innovation with a number of new applications where the technology can be applied. - This panel will take a look at some of the latest innovations and applications being worked on today. #### **Speakers** - Kevin Affolter, Director of PLM for Tunable Transmission at JDSU - Robert Blum, Director of Strategic Marketing at Oclaro - Srinath Kalluri, Director of Transmission Components R&D at JDSU - Vladimir Kozlov, founder and CEO of LightCounting #### ROBERT BLUM OCLARO #### **10G Footprint Evolution** T-SFP+ TOSA has TOA functionality & wavelength tunability & control! #### 10G Tunable DWDM PON demo - Block View Wavelength Controller ## Low Power Indium Phosphide Addressing Mobile Applications "Mobile fronthaul is a key enabler of low-cost, high capacity mobile broadband networks. LightCounting estimates that fronthaul networks will use more than 14 million optical transceivers in 2014, with a market value of \$530 million, and we expect this market to grow to more than \$900 million over the next five years, driven by initial deployments and subsequent capacity upgrades of mobile 4G networks around the world." - Lightcounting, November 2014 # 28G 1.3mm Uncooled DML For SFP28 CPRI p-Electrode Ridge-Waveguide Standard-pitch grating CPM grating AR InGaAlAs-MQW n-InP sub. CPM Grating Concept Device Structure ### Features and Trends for Fronthaul Optical Modules - CPRI optical modules - 10G: High temperature operation to 90°C and beyond - Next generation 25G? - Low cost WDM/ Colorless transmitters Fig. 1. Radio access network over WDM-PON. #### Strong DWDM Growth Driven by 100G Coherent #### **Optical Component DWDM Market Size (\$M)** "Demand for 100G components and modules is a big driver for growth in WAN. We expect strong demand for pluggable coherent transceivers in 2015 and beyond. Vendors have a good reason to be optimistic about this market." Daryl Inniss, Practice Leader for Telecoms Components at Ovum #### 100G Analog Coherent CFP2 Differentiation Enabled by InP Photonic Integration Mach Zehnder Modulator Chip Co-Packaging of Key Indium Phosphide Elements Coherent Receiver Chip **Integrated 100G InP Transmitter Package** InP Micro Coherent Receiver Package "CFP2-ACO technology is the most important catalyst for cutting the cost of coherent equipment and accelerating the rollout of 100G metro networks." Andrew Schmitt, Principal Analyst, Infonetics Research #### 100G CFP2 Module - Next generation 100G coherent pluggable - Metro, regional and high performance long-haul applications - Delivers maximum faceplate density - Provides scalability to enable bandwidth as required ## Packaged NLW laser, dual QPSK MZ and polarisation multiplexer with LO output 1st Generation Engineering Prototype Based on 40G DQPSK package 2nd generation transmitter designed for CFP2 RF on rear of package; DC on long side of package **SOA Overview** - Semiconductor Optical Amplifiers (SOAs) integrated pre- and post Mach-Zehnder modulator - Integration of SOAs onto dual polarization I&Q modulator chip allows enhanced output power for linear modulation formats with large 'modulation loss' - Also provides greater flexibility for various applications - X-Y power balance - Trace-tone provision - VOA capability - See Th4E paper at OFC 2015 for details - R. Griffin et al., "InP Coherent Optical Modulator with Integrated Amplification for High Capacity Transmission" #### 200G 16-QAM Demo at ECOC 2014 - Demonstrated 200G 16-QAM operation - 100G for each polarization - Oclaro CFP2 and ClariPhy LightSpeed-II™ CL20010 - Continuous error-free 200G operation for 8+ hours daily at ECOC 2015 #### Tunables for data center interconnect - High bandwidth monolithically integrated laser + modulator - 40/80 DWDM channels for 80km point-to-point link #### **Summary** - Tunable lasers have been very successful in DWDM long haul and metro applications - Discrete \rightarrow 300-pin MSA \rightarrow TXFP \rightarrow TSFP+ \rightarrow CFP2-ACO - Integration of lasers with InP modulators has enabled pluggable form factors for 10G and 100G - InP platform allows for integration of SOAs and waveguide PD's and monitors onto one chip - New applications are emerging that will drive the need for DWDM and – if cost points are right – to tunable lasers - Wireless fronthaul, DWDM PON, Data center interconnects #### SRINATH KALLURI JDSU #### **Tunable Laser Basics** #### A few examples of tunable lasers... - DBR Lasers - Conventional DBR (<~15 nm) - Extended Tuning DBR's (≥ 40 nm) - External Cavity Lasers (≥ 40 nm) - MEMS Tunable Lasers (≥ 40 nm) - VCSEL - In-Plane - Multi-wavelength DFB array (35 nm) - MEMs mirror or power combiner - <4nm per element</p> #### Device architectures in more detail | Device
Architecture | Wavelength Selection | Tuning Physics | Integration | Commercial
Example | R&D Example | |------------------------------|--|-------------------------------|---------------------------------|---|-------------| | S(S)G-DBR,
DS-DBR,
MGY | Passive WG Grating(s) | Current injection | Monolithic | JDSU (Agility),
Oclaro,
Finisar (Syntune) | UCSB, NTT | | DBR | Passive WG Grating(s) | Thermal (microheater) | Monolithic | | NTT, JDSU | | Distributed
Reflector | Active & Passive WG Grating | Thermal (microheater) | Monolithic | Sumitomo (Eudyna) | | | DFB Array | Active WG Grating | Thermal (TEC) | Hybrid (MEMs coupling optics) | Neophotonics
(Santur) | | | DFB Array | Active WG Grating | Thermal (TEC) | Monolithic (power combiner+SOA) | Furukawa | NTT | | Microring
Resonator | Passive WG Resonator(s) | Current injection | Monolithic | | NTT | | ECL | Etalon(s) | Thermal (microheater) | Hybrid | Neophotonics
(Emcore / Intel) | | | ECL | Surface normal grating resonator (+50GHz etalon) | Electrooptic (Liquid Crystal) | Hybrid | Cyoptics (Pirelli) | NEC | | ECL | Diffraction grating (Littman or Littrow) | Micromechanical | Hybrid | lolon | Various | | ECL | Diffraction grating (Littman or Littrow) | Mechanical | Hybrid | Various | | | VCSEL | Cavity mode | Micromechanical | Monolithic or Hybrid | Coretek,
Bandwidth9/10 | | #### Tunable Winners – Depends on architecture - Telecom (circuit switch) requirements - Power dissipation and Size - Output power, LW, SMSR, RIN - Vernier-tuned multi-section lasers (integrated or external cavity) or DFB arrays are leaders - All quasi-continuous tuning - Packet switching - Fast channel switching (~ns) favors carrier injection and small tuning volume to counteract thermal transients - micro-rings - Uncooled operation - Use tunability to compensate for temperature effects - Favors temperature-insensitive tuning elements and/or mode-hop free continuous tuning – MEMS diffraction gratings or VCSELs #### **Hybrid Integration Value Proposition** - When system deployment can tolerate higher cost and size but cannot compromise on performance or market timing - Monolithic approaches mature later in time as many functional elements need development and high yields - First gen 100G coherent Rx was an example of a hybrid integration platform incorporating free space optics, PLC, and III-Vs - Some level of hybrid-integration is present in all components PLC miniaturization 100G Micro ICR (~ 25mm) 100G Coherent Rx(~ 50mm) #### Monolithic Integration Value Proposition - Volume deployment typically needs form factors optimized for port count, size, power dissipation and cost - When module form factors are standards driven and ecosystem is more mature 10Gb/s: Monolithically integrated InP tunable laser and DP-IQ modulator ILMZ chip (~4mm) ILMZ TOSA (~18mm) T-SFP+ #### 200Gb/s: Monolithically integrated InP tunable laser and DP-IQ modulator IL-QPMZ Chip **IL-QPMZ TOSA** CFP2-ACO #### Monolithic IL-QPMZ Transmitter: #### **Packaging Evolution** ntegrated InP #### Parallel Integration: Multicarrier Dual carrier in a single package to reduce cost and better interface with dual-ASICs - Dual carrier monolithic integration - Size reduction, cost reduction wrt single package options #### Shrink size, increase bandwidth, multiple carriers - Co-packaging multiple receivers for size and cost savings - Communication interfaces (SPI) pulled into package to reduce I/O #### *Integrated multi-carrier approaches* - Dual/Quad tunable lasers with shared flex locker - Size reduction, cost reduction - Super channel applications #### Summary - Tunable laser products have been widely deployed in DWDM applications for > 10 years - Hybrid integration widely used in optical components - Increasing functional monolithic integration enables lower cost and greater scalability - Packaging approach needs to be addressed for new, lower cost (shorter life) applications - Parallel integration starting but not pervasive ## To tune or Not to tune? Market in Numbers. #### LightCounting Market Research **OFC 2015** Vladimir Kozlov • March 24, 2015 #### Optical Transceiver Shipments Sales of optical transceivers exceeded \$4 billion in 2014 #### 1GbE and 10GbE Optics Sales of Ethernet Optical transceivers exceeded \$1.5 billion in 2014 #### **DWDM Lasers and Transceivers** Sales of tunable lasers and transceivers reached \$350 million in 2015 ## Wavelength Selective Switches (WSS) modules Sales of WSS declined from \$280 million in 2010 to \$200 million in 2014 ## To tune or Not to tune? #### Forecast for WSS modules ## Tunable ports as a fraction of the total optical transceiver shipments More than 99% of the optical connectivity will remain fixed! #### Disclaimer The views we are expressing in this presentation are our own personal views and should not be considered the views or positions of the Ethernet Alliance #### Thank You! If you have any questions or comments, please email admin@ethernetalliance.org Ethernet Alliance: visit www.ethernetalliance.org - in Join the Ethernet Alliance LinkedIn group - Follow @EthernetAllianc on Twitter Visit the Ethernet Alliance on Facebook