Ethernet in the Field 50Gb/s Lane Rate Webinar

March 21, 2023

Disclaimer: The views expressed in this panel presentation are those of the presenters and not of the Ethernet Alliance.

ethernet alliance

3-Part Series

Today Webinar 1: Ethernet in the Field (50Gb/s Lane Rate) Webinar 2: Ethernet in Design (100Gb/s Lane Rate) Webinar 3: Ethernet in the Future (200Gb/s Lane Rate)

Agenda

Welcome	Sam Johnson, Engineering Manager, Intel Corp
Current State of Ethernet	EA Higher Speed Networking Subcommittee Co-chair
Cabling Nomenclature PAM4 Overview Ecosystem Deployments	Ryan Harris, Sales and Market Manager, High-Speed Cable Assemblies, Siemon Company
50Gb/s Auto Negotiation and	Craig Foster, Product Line Manager,
Link Training	Storage and Networking, Teledyne LeCroy
Link Establishment Interop Challenges Interop Plugfest Value	Sam Johnson

About Ethernet Alliance

Sam Johnson, HSN Subcommittee Co-Chair, Intel

The Ethernet Alliance

Global Community of End Users, System Vendors, Component Suppliers & Academia

Our Mission

- To promote industry awareness, acceptance and advancement of technology and products based on, or dependent upon, both existing and emerging IEEE 802 Ethernet standards and their management.
- **To accelerate industry adoption** and remove barriers to market entry by providing a cohesive, market-responsive, industry voice.
- Provide resources to establish and demonstrate multi-vendor interoperability.

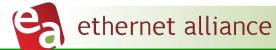
Ethernet Alliance Strategy

Expanding the Ethernet Ecosystem, Supporting Ethernet Development

Facilitate interoperability testing & assurance

- Industry Plug fests supporting member and technology initiatives
- PoE Certification Program

Global outreach and collaborative interaction with other industry organizations


- Worldwide Membership
- Multiple SIGs, applications and MSAs
- Industry consensus building

Thought Leadership

- EA-hosted Technology Exploration Forums (TEFs)
- Technology and standards incubation

Promotion of Ethernet

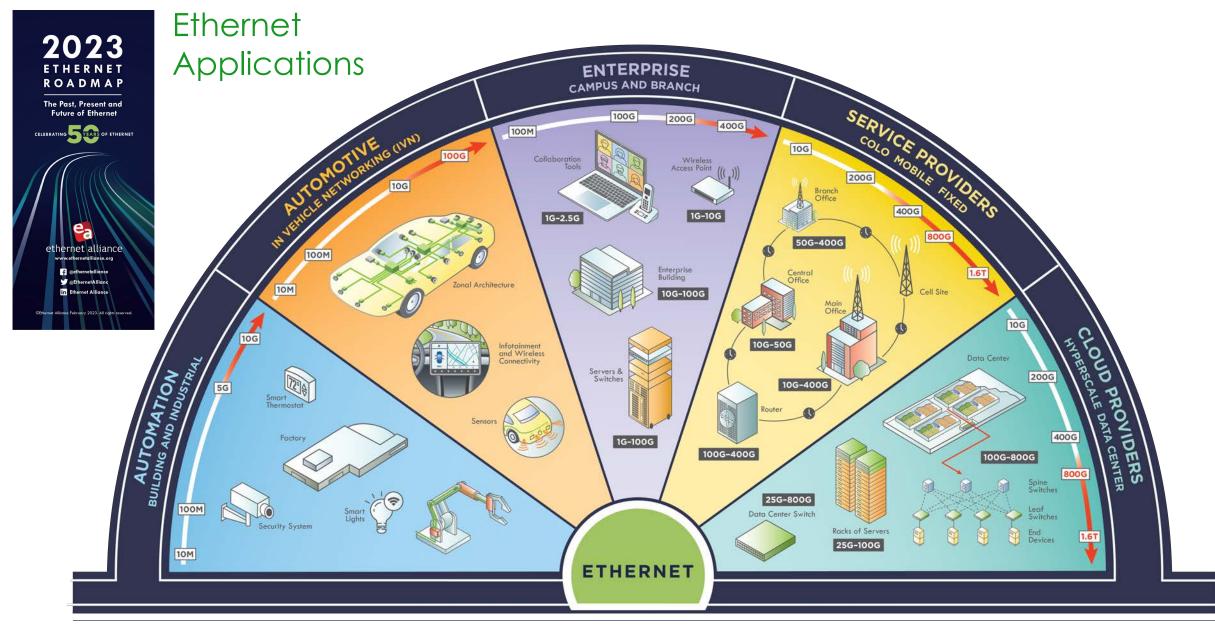
- Media and industry analysts outreach
- Education
- Marketing (trade shows & panel presentations, white papers, blogs & social media)

2023 Ethernet Roadmap

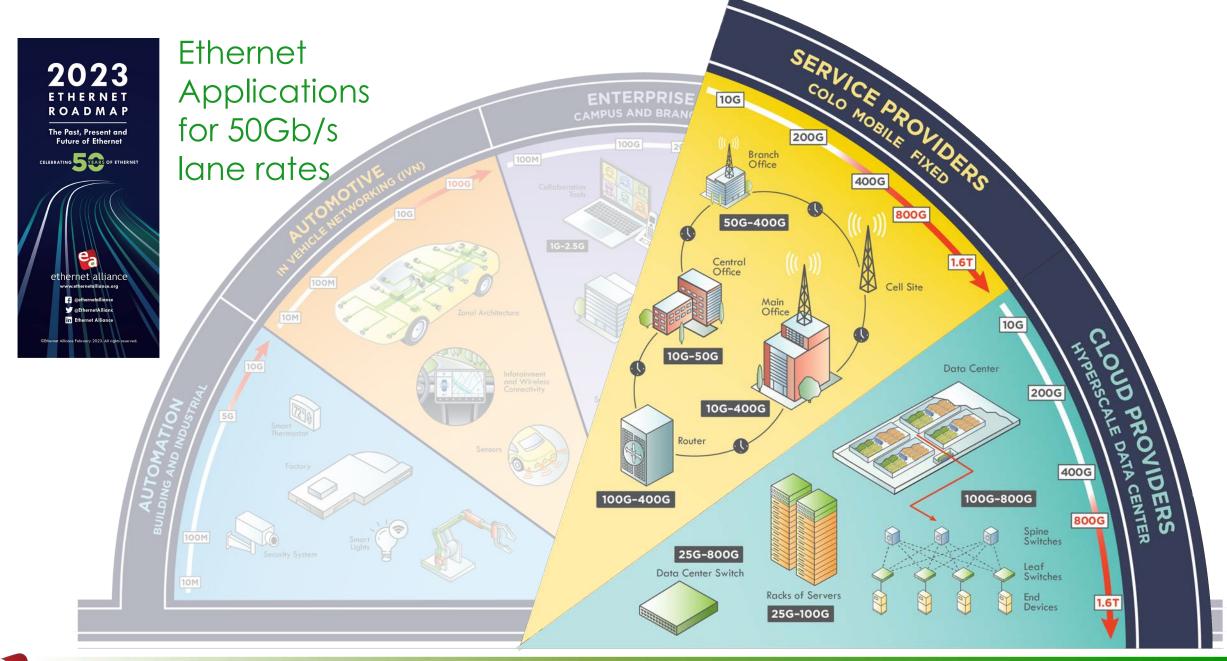
- 50th Anniversary of Ethernet edition launched at OFC 2023
- Digital version and graphics available via the Alliance website
- Also available as part of the "Ethernet Alliance in a box" event resources (for members on-demand)

ethernet alliance

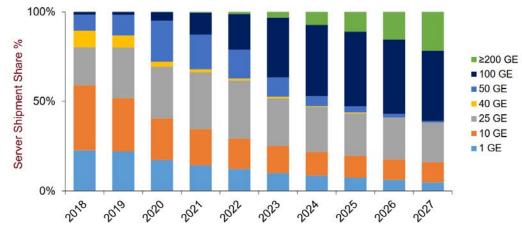
ethernet alliance


©Ethernet Alliance February 2023. All rights reserved.

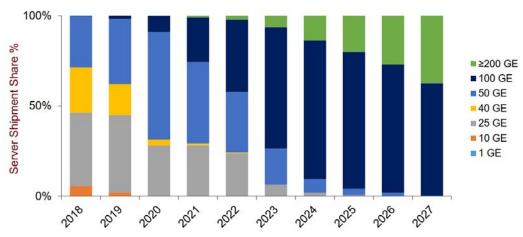
7


Current State of Ethernet

Sam Johnson, HSN Subcommittee Co-Chair, Intel

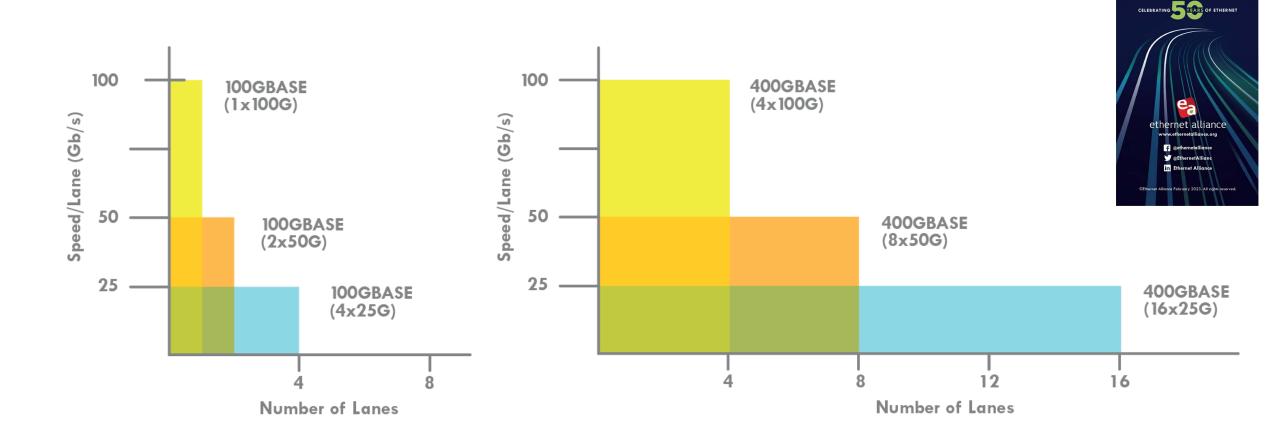

Ethernet Market Forecast

The global Ethernet adapter market size was valued at USD \$4.6B in 2022 and conservatively projected to reach **\$6.3B by 2027** according to the "Ethernet Adapter and Smart NIC 5-Year January 2023 forecast" report from the Dell'Oro Group


Additional predictions for 2027:

- 200 Gb/s and higher-speed ports will account for 44% of the server network revenue.
- The Smart NIC market will reach \$2B.
- **100GbE will surpass 25GbE** in port shipments as the mainstream server port speed.

Server Speed Migration, Total Market



Server Speed Migration, Top 4 US Cloud

Source: Dell'Oro Group 2/2/23 Press Release: https://www.delloro.com/news/smart-nic-market-to-approach-2-billion-by-2027/

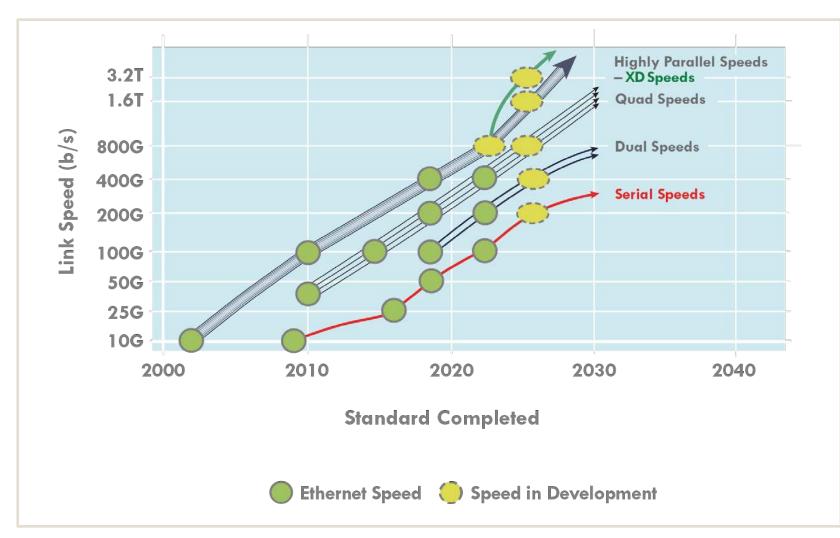
Fatter Pipes, Higher Data Rates

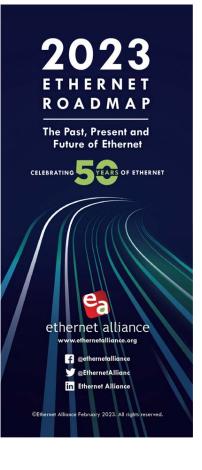


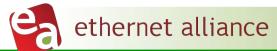
2023

ETHERNET ROADMAP The Past, Present and Future of Ethernet

Fatter Pipes, Higher Data Rates

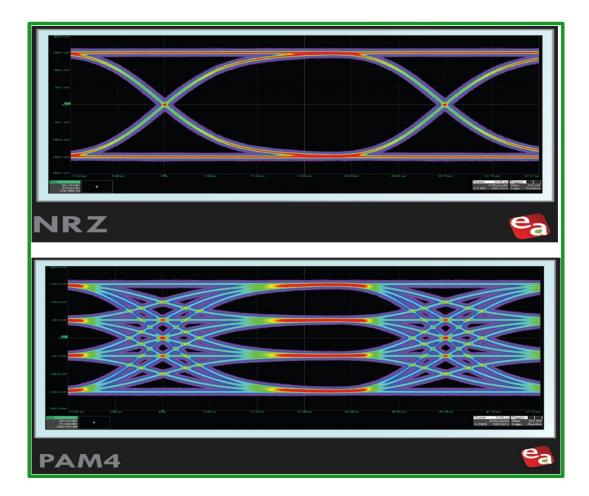





2023

ETHERNET ROADMAP The Past, Present and Future of Ethernet

Ethernet Speeds

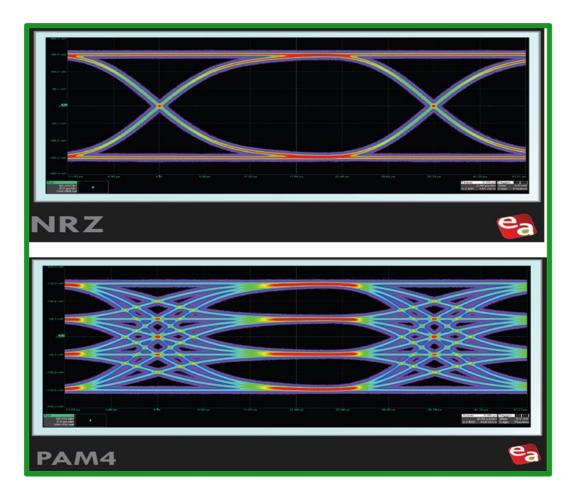


PAM4 Overview

Ryan Harris, Sales and Market Manager, High-Speed Cable Assemblies, Siemon Company

NRZ to PAM4 – More Symbols

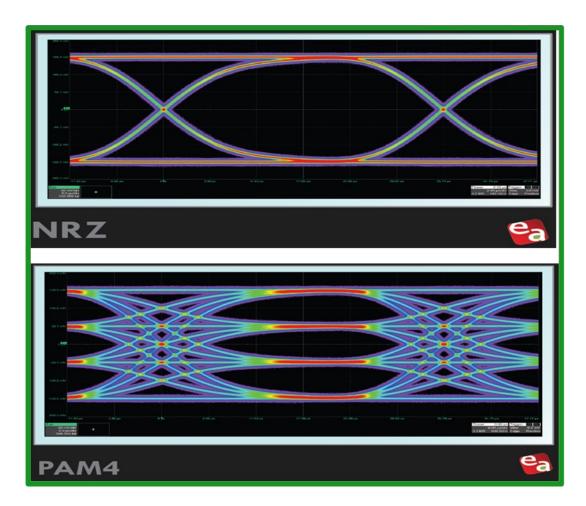
NRZ


- Non-Return to Zero
- uses 0 or 1 as bit symbols for information

PAM4

- Four-level Pulse Amplitude
 Modulation
- uses **00**, **01**, **10**, **11** as bit symbols for information
- PAM4 symbols enable 2x the Gbps

NRZ to PAM4 – Gbaud Frequency


NRZ

- one baud carries one bit symbol
- 25GAUI is a 25.78125 GBd
- carries 25 Gbps/GbE

PAM4

- one baud carries two bit symbols
- 50GAUI-1 is a 26.5625 GBd
- carries 50 Gbps/GbE

NRZ to PAM4 – Signal Noise & FEC

Short Reach DAC Forward Error Correction (FEC) Settings

Cable type	SFP+	SFP28	SFP56
typical FEC	10 GbE NRZ	25 GbE NRZ	50 GbE PAM4
2-meter DAC	no FEC	no FEC	KP1 FEC
3-meter DAC	no FEC	FC-FEC	KP1 FEC
5-meter DAC	no FEC	RS-FEC	
7-meter DAC	no FEC		

- PAM4 is more noise sensitive over 3 signal eyes
- FEC is determined by cable performance metrics
- Passive DAC with FEC can only support 3-meters
- PAM4 only KP1 FEC setting option
- FEC increases latency to achieve signal health

Cabling Nomenclature

Ryan Harris, Sales and Market Manager, High-Speed Cable Assemblies, Siemon Company

One Lane 50G Ports

SFP56 (1-lane 50 GbE = 50GBASE)

- Using same SFP28 SFF-8402 specification
- Backwards compatible SFP+/SFP28 cages

Side A (pluggable)	Signal Type	Side A Config.	Cable Type	Side B (pluggable)
SFP56	50 GbE PAM4	1x 50GbE	Straight Through	SFP56
Side A (pluggable)	Signal Type	Side A Config.	Cable Type	Side B (pluggable)
SFP28	25 GbE NRZ	1x 25GbE	Straight Through	SFP28

Single	Lane Transc	eiver
SFP+	SFP28	SFP56
10G NRZ	25G NRZ	50G PAM4

Two Lane 50G Ports

SFP-DD (2-lane 50 GbE = 100GBASE)

- Second row of pins on card edge PCB-
- Backwards compatible with SFP+/SFP28

Side A (pluggable)	Signal Type	Side A Config.	Cable Type	Side B (pluggable)
SFPDD	50 GbE PAM4	1x 100GbE	Straight Through	SFPDD
SFPDD	50 GbE PAM4	2x 50GbE	2x Breakout	SFP56

SFP-DD

****QSFP56 (2-lane 50 GbE = 100GBASE)**

- Uses only 2 electrical lanes and 2 lanes not used
- Backwards compatible with QSFP28 cages
- Typically used on the breakout ends-

Four Lane 50G Ports

QSFP56 (4 lane 50 GbE = 200GBASE)

- Using same QSFP28 SFF-8665 specification
- Backwards compatible with QSFP+/QSFP28

Side A (pluggable)	Signal Type	Side A Config.	Cable Type	Side B (pluggable)
QSFP56	50 GbE PAM4	1x 200GbE	Straight Through	QSFP56
QSFP56	50 GbE PAM4	2x 100GbE	2x Breakout	SFPDD/**QSFP56
QSFP56	50 GbE PAM4	4x 50GbE	4x Breakout	SFP56
Side A (pluggable)	Signal Type	Side A Config	Cable Type	Side B (pluggable)
QSFP28	25 GbE NRZ	1x 100GbE	Straight Through	QSFP28
QSFP28	25 GbE NRZ	2x 50GbE	2x Breakout	**QSFP28
QSFP28	25 GbE NRZ	4x 25GbE	4x Breakout	SFP28

4-Lane Transceiver					
QSFP+	QSFP28	QSFP56			
40G NRZ	100G NRZ	200G PAM4			

• **QSFP half loaded, only 2 of the 4 lanes used

Eight Lane 50G Ports

QSFP-DD (8 lane 50 GbE = 400GBASE)

• Long and shorter signal pins

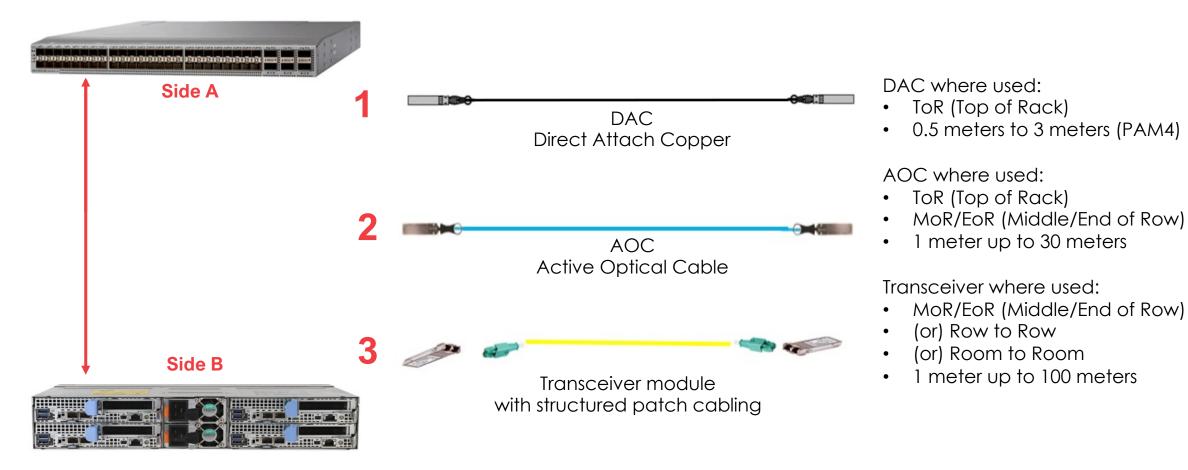
ethernet alliance

• Backwards compatible with QSFP+/QSFP28

OSFP (8 lane 50 GbE = 400GBASE)

Side A (pluggable)	Signal Type	Side A Config.	Cable Type	Side B (pluggable)
QSFPDD/OSFP	50 GbE PAM4	1x 400GbE	Straight Through	QSFPDD/OSFP
QSFPDD/OSFP	50 GbE PAM4	2x 200GbE	2x Breakout	QSFP56
QSFPDD/OSFP	50 GbE PAM4	4x 100GbE	4x Breakout	SFPDD/**QSFP56
QSFPDD/OSFP	50 GbE PAM4	8x 50GbE	8x Breakout	SFP56
Side A (pluggable)	Signal Type	Side A Config.	Cable Type	Side B (pluggable)
QSFPDD/OSFP	25 GbE NRZ	1x 200GbE	Straight Through	QSFPDD/OSFP
QSFPDD/OSFP	25 GbE NRZ	2x 100GbE	2x Breakout	QSFP28
QSFPDD/OSFP	25 GbE NRZ	4x 50GbE	4x Breakout	**QSFP28
QSFPDD/OSFP	25 GbE NRZ	8x 25GbE	8x Breakout	SFP28

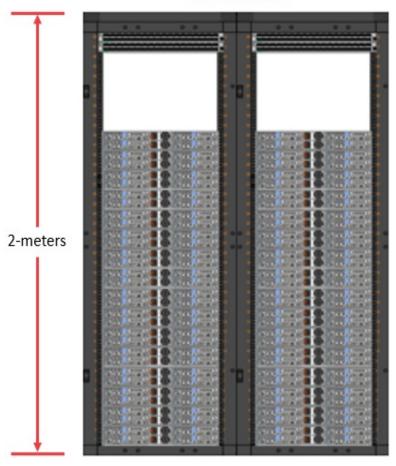
400G PAM4


23

Ecosystem Deployments

Ryan Harris, Sales and Market Manager, High-Speed Cable Assemblies, Siemon Company

50G per lane – PAM4 Cabling Options


50G per lane - Power Considerations

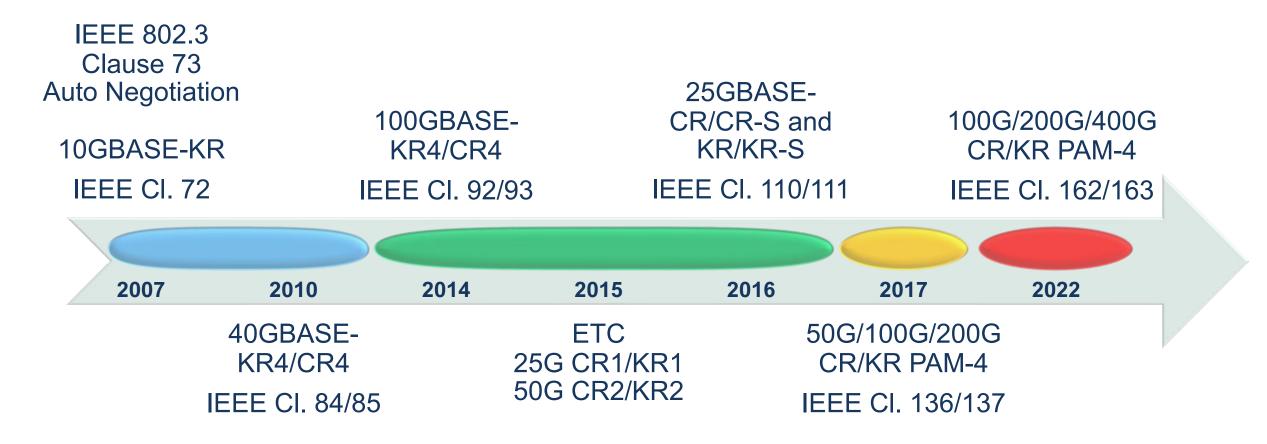
50G per Lane – ToR and DAC at the Edge

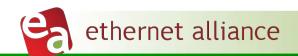
42U Cabinet

Direct Attach Copper (Passive)

• PAM4 DAC supports up to 3-meters (9.8 ft)

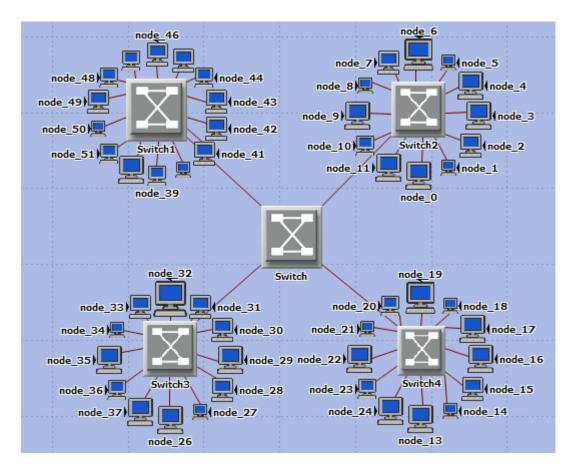
Side A (pluggable)	Signal Type	Side A Config.	Cable Type	Side B (pluggable)
SFP56	50 GbE PAM4	1x 50GbE	Straight Through	SFP56
SFPDD	50 GbE PAM4	1x 100GbE	Straight Through	SFP56DD
SFPDD	50 GbE PAM4	2x 50GbE	2x Breakout	SFP56
QSFP56	50 GbE PAM4	1x 200GbE	Straight Through	QSFP56
QSFP56	50 GbE PAM4	2x 100GbE	2x Breakout	SFPDD/**QSFP56
QSFP56	50 GbE PAM4	4x 50GbE	4x Breakout	SFP56
QSFPDD/OSFP	50 GbE PAM4	1x 400GbE	Straight Through	QSFPDD/OSFP
QSFPDD/OSFP	50 GbE PAM4	2x 200GbE	2x Breakout	QSFP56
QSFPDD/OSFP	50 GbE PAM4	4x 100GbE	4x Breakout	SFPDD/**QSFP56
QSFPDD/OSFP	50 GbE PAM4	8x 50GbE	8x Breakout	SFP56

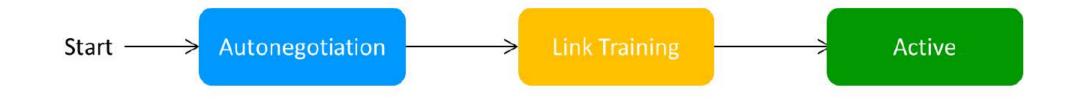

50GPAM4 AN/LT


Craig Foster, Product Line Manager, Storage and Networking, Teledyne LeCroy

Evolution of HSN Auto Negotiation and Link Training

10Gbs/lane NRZ
25Gbs/lane NRZ
50Gbs/lane PAM-4
100Gbs/lane PAM-4

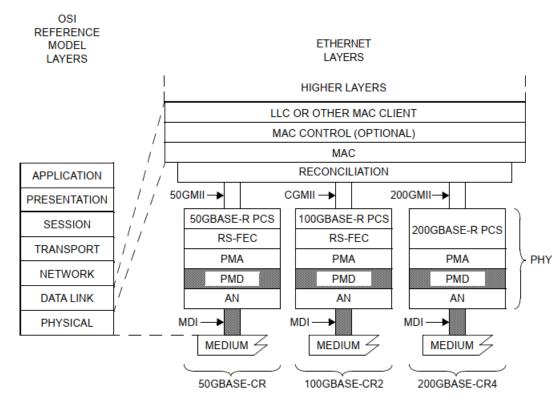



Why is Auto Negotiation important?

Previous configurations required managers to manually configure each port for speed and port configuration.

With more speeds and configurations available this is becoming less feasible.

Auto Negotiation allows devices to determine the best supported link configuration upon connection without manual interference.



How does link Auto Negotiation work?

									Spreadsheet View		
	No.	Start Time		Port	Speed	Port No	Frame	Frame			Summary
225						Port No	Frame		0.40.155		Summary
226		20.999 976 780(s)		P5-Rx				32896 - Auto-Negotiation		E Std 802.3 ; Acknowledge=0x0 ; Next Page=0x0	
227	0	21.011 135 116(s)) 🏼 🖣	P5-Rx	AN	🗢 P6		32896 - Auto-Negotiation	0x10:IEE	E Std 802.3 ; Acknowledge=0x0 ; Next Page=0x0	
227	'1	21.022 293 457(s)) 4	P5-Rx	AN	🗢 P6		32896 - Auto-Negotiation	0x10:IEE	E Std 802.3 ; Acknowledge=0x0 ; Next Page=0x0	
227	2	21.033 451 797(s)) 🖪	P5-Rx	AN	🗢 P6		32896 - Auto-Negotiation	0x10:IEE	E Std 802.3 ; Acknowledge=0x0 ; Next Page=0x0	
227	2	21.040 280 436(s)) D	1-Tx 🏓	ΔΝ	P1 =	3 - Auto-Negotiation			E Std 802.3 ; Acknowledge=0x0 ; Next Page=0x1	
							-				
227		21.040 281 458(s)		1-Tx 🏓			+ Auto Negotiation		0x10:IEE	E Std 802.3 ; Acknowledge=0x1 ; Next Page=0x1	
227	5	21.040 282 815(s)) P	1-Tx 🏓	-	P1 =	0x00:Loss of Sync				
<u> </u>											
									Frame Inspector View		
Length: N/A		M Hide Rese	erved Field:	s I	Marker : Name				Des	cription	
₃ Index	c	Data	Fie	ld			Value				
8 0001		00 38 00		Auto-Neg	otiation		0x80003800 2008				
0002					tor Field(S_0:4)		0x10 : IEEE Std 802.3				
	20	00			ed Nonce Field(E	E_0:4)	0x00				
Field View					Ability (C0:C2)		0x0				
₽					0: PAUSE		0x0				
E					C1: ASM_DIR		0x0				
					te Fault		0x0				
liew					owledge		0x0				
Data Vie				- Next I	-		0x0				
å					mitted Nonce Fie		0x07				
aw					nology Ability Fie	eld(A_0:24)	0x000200				
					0 1000BASE-KX		0x0				
					1 10GBASE-KX4	ł	0x0				
					2 10GBASE-KR		0x0				
					3 40GBASE-KR4		0x0				
					4 40GBASE-CR4		0x0				
					5 100GBASE-CR		0x0				
					6 100GBASE-KP		0x0				
					7 100GBASE-KR		0x0				
					8 100GBASE-CR		-CR-S 0x0				
					10 25GBASE-KR-						
					11 2_5GBASE-KK		0x0				
					12 5GBASE-KR	~	0x0				
					13 SOGBASE-KR	Or SOGRASE.					
					14 100GBASE-K						
					15 200GBASE-K						
					16 100GBASE-K						
					17 200GBASE-K						
					18 400GBASE-K						
					Capability (F0:F3		0x8				
					2: 25G RS-FEC F	•	0×1				
				· ·	3: 25G BASE-R F						
					0: 10 Gb/s per la						
				F	1: 10 Gb/s per la	ane FEC Reque	ested 0x0				

Ethernet Layers

200GMII = 200 Gb/s MEDIA INDEPENDENT INTERFACE 50GMII = 50 Gb/s MEDIA INDEPENDENT INTERFACE AN = AUTO-NEGOTATION CGMII = 100 Gb/s MEDIA INDEPENDENT INTERFACE LLC = LOGICAL LINK CONTROL MAC = MEDIA ACCESS CONTROL MDI = MEDIUM DEPENDENT INTERFACE MAC = MEDIA ACCESS CONTROL PCS = PHYSICAL CODING SUBLAYER PHY = PHYSICAL LAYER DEVICE PMA = PHYSICAL MEDIUM ATTACHMENT PMD = PHYSICAL MEDIUM DEPENDENT RS-FEC = REED-SOLOMON FORWARD ERROR CORRECTION

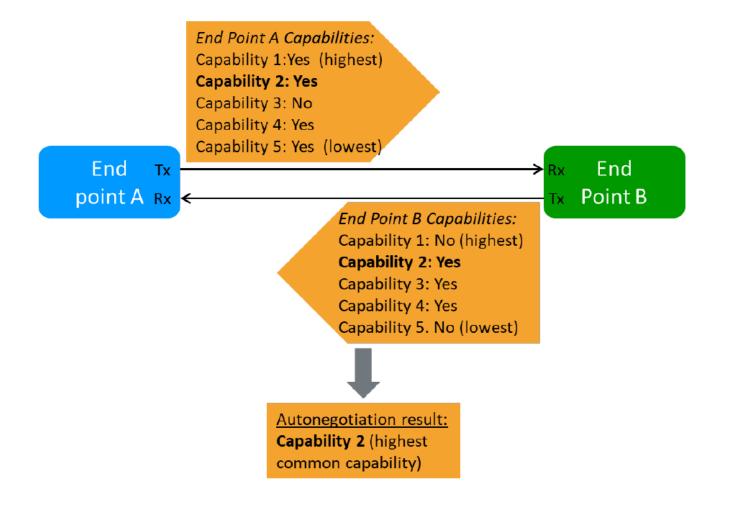

Figure 136–1—50GBASE-CR, 100GBASE-CR2, and 200GBASE-CR4 relationship to the ISO/IEC Open Systems Interconnection (OSI) reference model and the IEEE 802.3 Ethernet model

Table 73–5—Priority Resolution

Priority	Technology	Capability
<u>1</u>	400GBASE-KR4 or 400GBASE-CR4	400 Gb/s 4 lane, highest priority
2	200GBASE-KR2 or 200GBASE-CR2	<u>200 Gb/s 2 lane</u>
<u>3</u> +	200GBASE-KR4 or 200GBASE-CR4	200 Gb/s 4 lane , highest priority
<u>4</u>	100GBASE-KR1 or 100GBASE-CR1	100 Gb/s 1 lane
<u>5</u> 2	100GBASE-KR2 or 100GBASE-CR2	100 Gb/s 2 lane
<u>6</u> 3	100GBASE-CR4	100 Gb/s 4 lane
<u>7</u> 4	100GBASE-KR4	100 Gb/s 4 lane
<u>8</u> 5	100GBASE-KP4	100 Gb/s 4 lane
<u>9</u> 6	100GBASE-CR10	100 Gb/s 10 lane
<u>10</u> 7	50GBASE-KR or 50GBASE-CR	50 Gb/s 1 lane
<u>11</u> 8	40GBASE-CR4	40 Gb/s 4 lane
<u>12</u> 9	40GBASE-KR4	40 Gb/s 4 lane
<u>13</u> 10	25GBASE-KR or 25GBASE-CR	25 Gb/s 1 lane
<u>14</u> 11	25GBASE-KR-S or 25GBASE-CR-S	25 Gb/s 1 lane, short reach
<u>15</u> +2	10GBASE-KR	10 Gb/s 1 lane
<u>16</u> 13	10GBASE-KX4	10 Gb/s 4 lane
<u>17</u> -14	5GBASE-KR	5 Gb/s 1 lane
<u>18</u> 15	2.5GBASE-KX	2.5 Gb/s 1 lane
<u>19 16</u>	1000BASE-KX	1 Gb/s 1 lane, lowest priority

How does link Auto Negotiation work?

Base Pages

Auto-Negotiation	0x80003800 2008
Selector Field(S_0:4)	0x10 : IEEE Std 8
Echoed Nonce Field(E_0:4)	0x00
Pause Ability (C0:C2)	0x0
CO: PAUSE	0x0
C1: ASM_DIR	0x0
Remote Fault	0x0
Acknowledge	0x0
···· Next Page	0x0
Transmitted Nonce Field(T_0:4)	0x07
Technology Ability Field(A_0:24)	0x000200
A0 1000BASE-KX	0x0
A1 10GBASE-KX4	0x0
A2 10GBASE-KR	0x0
A3 40GBASE-KR4	0x0
A4 40GBASE-CR4	0x0
A5 100GBASE-CR10	0x0
A6 100GBASE-KP4	0x0
A7 100GBASE-KR4	0x0
A8 100GBASE-CR4	0x0
A9 25GBASE-KR-S or 25GBASE-CR-S	0x0
A10 25GBASE-KR or 25GBASE-CR	0x0
- A11 2_5GBASE-KX	0x0
A12 5GBASE-KR	0x0
A13 50GBASE-KR Or 50GBASE-CR	0x1
A14 100GBASE-KR2 Or 100GBASE-CR2	0x0
- A15 200GBASE-KR4 Or 200GBASE-CR4	0x0
- A16 100GBASE-KR1 Or 100GBASE-CR1	0x0
A17 200GBASE-KR2 Or 200GBASE-CR2	0x0
A18 400GBASE-KR4 Or 400GBASE-CR4	0x0
FEC Capability (F0:F3)	0x8
F2: 25G RS-FEC Requested	0×1
F3: 25G BASE-R FEC Requested	0x0
F0: 10 Gb/s per lane FEC Ability	0x0
F1: 10 Gb/s per lane FEC Requested	0x0

Each device begins Auto negotiation by sending a Base Page that describes what speeds, signaling, and FEC are supported by the device.


The devices repeatedly send these pages until the ACK bit is set – indicating that the Base Page has been received.

Message Page indicates a code number that describes what pages are coming next

These are sent until the ACK bit is set

Field	Value
Auto-Negotiation	0xA015CAC0 FB20
Auto-pegotiation OUT Extended Next page	0x4015C4C0 EP20
··· Message Code	0x005 : Organizationally Unique Identifier (OUI) tag code
	0.1
ACK2	0x0
···· MP	0x1
ACK	0x0
···· Next Page	0x1
OUI_12:2	0x656
OUI_23:13	0x7D9

Additional Pages

More pages are sent (Extended Technology Ability Field, Remote Fault message, OUI, Phy identify tag code)

Field	Value
	0xC0400040 0000
Auto-negotiation OUI Extended Next page	e 0xC0400040 0000
 Extended Technology Abilities 	0x3
D_8:2	0x00
OUI_1:0	0x2
T Bit	0x0
D_13:12	0x0
ACK	0x0
Next Page	0x0
D_19:16	0x0
25GBASE-KR1	0x0
25GBASE-CR1	0x0
D_23:22	0x0
50GBASE-KR2	0x0
50GBASE-CR2	0x1
D_26	0x0
400GBASE-KR8 / CR8	0x0
LL-RS-FEC Ability	0x0
FEC Control	0x0
F1: Clause 91 FEC ability	0x0
F2: Clause 74 FEC ability	0x0
F3: Clause 91 FEC requested	0x0
F4: Clause 74 FEC requested	0x0
LL-RS-FEC Request	0x0

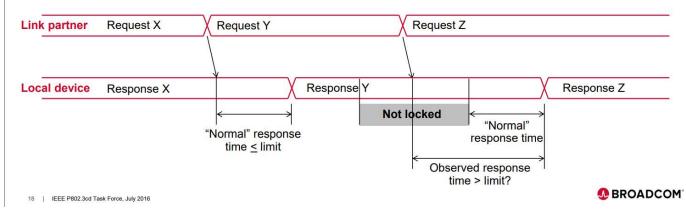
These are sent until the ACK bit is set

If the Next Page bit is set, then More pages will be sent in the same way

What to look for in Auto Negotiation

- Did Auto Negotiation occur?
- Was it sent in both directions?
- Were the capability bits set correctly?
- Incorrect transmission or response of parameters in base or extended pages
- Time Outs Receiver does not acknowledge receipt of a page, or takes too long to ACK
- Did the link progress to Link Training?

How does link training work?



L1 – Transmitter Training

Example

- IEEE Std 802.3-2015, 92.7.12 item b)
 - The start of the period is the frame marker of the training frame with the new request and the end of the period is the frame marker of the training frame with the corresponding response.
 - A new request occurs when the coefficient update field is different from the coefficient field in the preceding frame. The response occurs when the coefficient status report field is updated to indicate that the corresponding action is complete.

https://standards.incits.org/apps/group_public/download.php/82832/T11-2013-162v3.pdf https://www.ieee802.org/3/cd/public/July16/healey_3cd_01a_0716.pdf

L1 – Transmitter Training

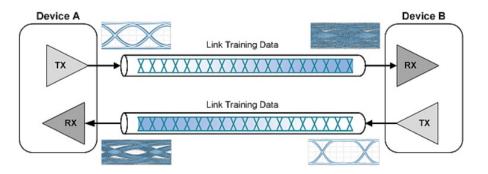
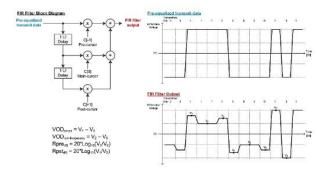
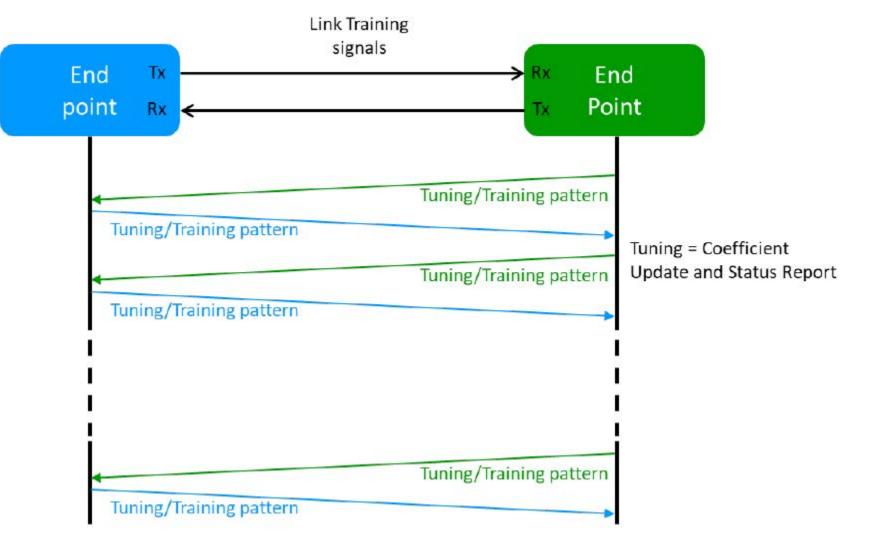



Figure 2 Link training phase

WHITE PAPER

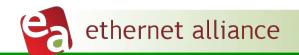

The NRZ and PAM4 Line Code


Many Ethernet connections have been based on the Non-Return-to-Zero (NRZ) line code, which transfers 1 bit per clock symbol. So far this has been used for SerDes speeds up to 25 Gbps. A 100 Gbps Ethernet connection defined with current standards is aggregated over four-25 Gbps SerDes – and even older standards define 100GbE sent on ten-10 Gbps SerDes. Higher transmission rates could be achieved by sending signals as a higher multiple of more 25 Gbps SerDes, but a desire to reduce the spectral bandwidth and number of SerDes used for the signal has driven a new line code for the high-speed signals: PAM4 (Pulse Amplitude Modulation), which encodes

two bits in a single symbol by using 4 signal levels. This provides 53.125 Gbps SerDes with a symbol rate (or baud rate) of 26.5625 GBaud. For simplicity these are normally referred to as 50 Gbps or 25 GBaud SerDes. Figure 1 illustrates the difference between the NRZ and PAM line codes.

https://www.edn.com/what-is-link-training-and-when-should-i-use-it/ Xena and Teledyne LeCroy White Paper

How does link training work?



How are the messages sent?

- The messages are sent with Manchester encoding (see next 2 slides)
- They are sent over and over until a response is given
- The systems do not have to achieve frame lock in order to communicate
- Frames with Manchester errors are/should be ignored

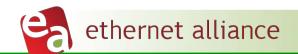
Start Time	Port	Speed	Port No	Frame	Frame	
02.838 117 277 000(s)	🗢 P10	200G PAM4	🗢 P2		Training Sequence	completed ; Lane No=1
02.838 117 903 000(s)	🗢 P10	200G PAM4	🗢 p2		1684 - Training Sequence	completed ; Lane No=1
02.838 308 298 000(s)	P9 🅈	200G PAM4	P1 🏓	905 - Training Sequence		completed ; Lane No=1
02.838 876 614 000(s)	P9 🏓	-	P1 🏓	0x00:Loss of Sync		Lane No=1
02.839 175 157 000(s)	🗢 P10	-	🗢 p2		0x00:Loss of Sync	Lane No=1
02.843 117 735 000(s)	🗢 P10	200G PAM4	🗢 P2		28468 - Training Sequence	completed ; Lane No=2
02.848 010 854 000(s)	🗢 P10	200G PAM4	🗢 P2		2424 - Training Sequence	completed ; Lane No=3
02.848 509 181 000(s)	P9 🏓	200G PAM4	P1 🏓	910 - Training Sequence		completed ; Lane No=3
02.849 080 633 000(s)	P9 🏓	-	P1 🏓	0x00:Loss of Sync		Lane No=3
02.849 532 573 000(s)	🗢 P10	-	🗢 P2		0x00:Loss of Sync	Lane No=3
02.860 505 757 000(s)	P9 🏓	200G PAM4	P1 🏓	741 - Training Sequence		Preset 2 ; Lane No=2
02.860 971 143 000(s)	P9 🏓	-	P1 🏓	0x00:Loss of Sync		Lane No=2

Manchester Encoding

136.8.11.1.1 Frame marker

Training frames are delimited by a specific sequence of PAM4 symbols. The training frame marker is a run of 16 consecutive "3" symbols followed by a run of 16 consecutive "0" symbols. This sequence is not found in the control field, status field, or training pattern and it uniquely identifies the beginning of a training frame.

136.8.11.1.2 Control and status fields


The control field comprises 16 bits with the structure defined in 136.8.11.2. The status field comprises 16 bits with the structure defined in 136.8.11.3.

Each bit of the control and status fields is sent as a differential Manchester encoded (DME) cell, where each cell is eight unit intervals in length. The specific rules for this encoding follow.

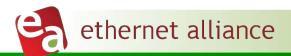
- a) A transition from 0 to 3 or from 3 to 0 occurs at the start of each cell.
- b) A transition from 0 to 3 or from 3 to 0 at the midpoint of a cell, i.e., four unit intervals from the transition at the beginning of the cell, corresponds to a logical one.
- c) The absence of a transition at the midpoint of a cell corresponds to a logical zero.

The control field is transmitted immediately after the frame marker. The status field is transmitted immediately after the control field. Within each field, the order of transmission is from bit 15 to bit 0.

When a training frame is received, if a violation of the DME encoding rules is detected within the control field or the status field, the contents of both fields in that frame are ignored.

Alternating Speeds

Ready to Send Data (PRBS to PCS)

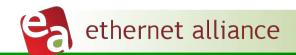

File	Edit	Vertical	Digital	Horiz/Acq	Trig	Display	Cursors	Measure	Mask	Math	MyScope	Analyze	Utilities	Help	•		Te	k 📃	X
		111																	
0 +																			
					n di sa man	n de antiques de							1); am (18 a 19 a	ali que a d					A
	i i i i i																		-
E							1. 1							- I			1 1 1	<u>, , , ,</u>	
*	- (start wi	ait_timer an	d send out '	100-300 add'i	training fa	ames)													- - -
		iks in LINK_								-					1	Transition from LINK_	READY to SEI	ND_DATA	
	The second	a da seculta	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	and in Active e	and dite	A Milbella Pre	din de la desta	Abd Adler Has	AN LAISE	LILE KL	tel dit, the east	Martin Ball	d falle, his	HALK A AND	P. C. J. A. C.	and the second second second	de deputer a line		
																			1.12
E							8.8												
	4 1				.		-	u i		-,-		- de la	1 	n İ	in the second			<u>i na</u>	-
	al parter	Stationary)	ite notional	Way Aport 1	In the second	ng hanna ball	administration	und the state be	allada	Wildel Wilder	indents of apple	alite and street	utitit, which	pillation	in a state	haddaalla had aa aa ah	unitation and a second		ality day
7	drug dib ste	Educkett & L	(Line of the		Lan Mar	- land and	stile Republic and	da natus La	us partient	dut de la	as been been	hearth offer	ly part of all t	ed a filts.	dia and	and a start of the start of the	the market half by	dependent de la	Liquid
3																			
		a second										al and the second							
	- 1 - 1		er, av blau,	e na considera										half of a star	Caralling pro-		and the stands when		
ſ	C1 1	100mV/di	v	50Ω ^B W	13.0G							A	🕦 Time	74.0	mV	2.0ms/div	12.5GS/s	80.0	os/pt
		100mV/di 100mV 1		50Ω ^B W	13.0G							Ho	rz Dly: 9	0.0ms		Stopped	Singl	e Seq RL:25	L
				94.8ms 94 94.8ms 94												1 acqs Auto Ma	y 06, 2015		I:03:17

Link Training Frame - Control

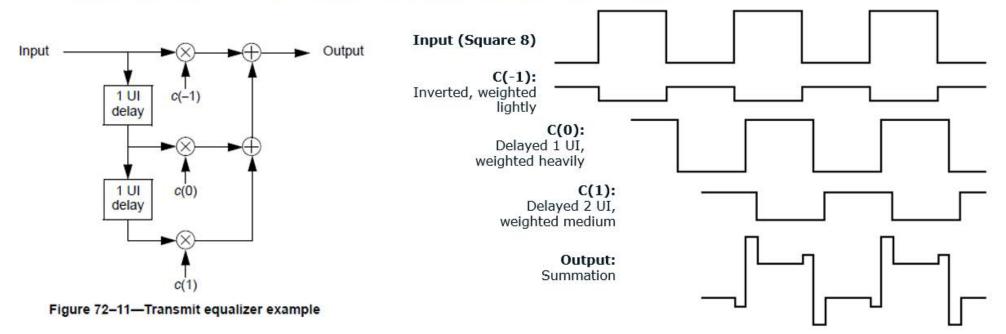
Table 136–9—Control field structure

Bit(s)	Name	Description
15:14	Reserved	Transmit as 0, ignore on receipt
13:12	Initial condition request	13 12 1 1 = Preset 3 1 0 = Preset 2 0 1 = Preset 1 0 0 = Individual coefficient control
11:10	Reserved	Transmit as 0, ignore on receipt
9:8	Modulation and precoding request	9 8 1 1 = PAM4 with precoding 1 0 = PAM4 0 1 = Reserved 0 0 = PAM2
7:5	Reserved	Transmit as 0, ignore on receipt
4:2	Coefficient select	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
1:0	Coefficient request	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Link Training Frame - Status


Table 136–10—Status field structure

Bit(s)	Name	Description					
15	Receiver ready	1 = Training is complete and the receiver is ready for data 0 = Request for training to continue					
14:12	Reserved	Transmit as 0, ignore on receipt					
11:10	Modulation and precoding status	11 10 1 1 = PAM4 with precoding 1 0 = PAM4 0 1 = Reserved 0 0 = PAM2					
9	Receiver frame lock	1 = Frame boundaries identified 0 = Frame boundaries not identified					
8	Initial condition status	1 = Updated 0 = Not updated					
7	Parity	Even parity bit					
6	Reserved	Transmit as 0, ignore on receipt					
5:3	Coefficient select echo	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
2:0	Coefficient status	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					


Link Training Frame - Example

Training Sequence	0x0000000
	0x0000
 Initial condition request 	0x0 : Individual coefficient control
Modulation and precoding request	0x0 : PAM2
···· Coefficient select	0x0 : c(0)
Coefficient request	0x0 : Hold
	0x000x0
Receiver Ready	0x0 : Continue
Modulation and precoding status	0x0 : PAM2
Receiver frame lock	0x0 : Frame boundaries not identified
···· Initial condition status	0x0 : Not updated
Parity	0x0
 Coefficient select echo 	0x0 : c(0)
Coefficient status	0x0 : Not updated

Previous Coefficients **TXFFE Overview**

- 3 tap feed forward equalization
- The output waveform is a summation of the following:
 - Input waveform * Pre-Cursor tap (inverted)
 - Input waveform * Main tap (delayed by 1UI)
 - Input waveform * Post-Cursor tap (inverted, delayed by 2 UI)

Coefficients

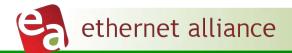
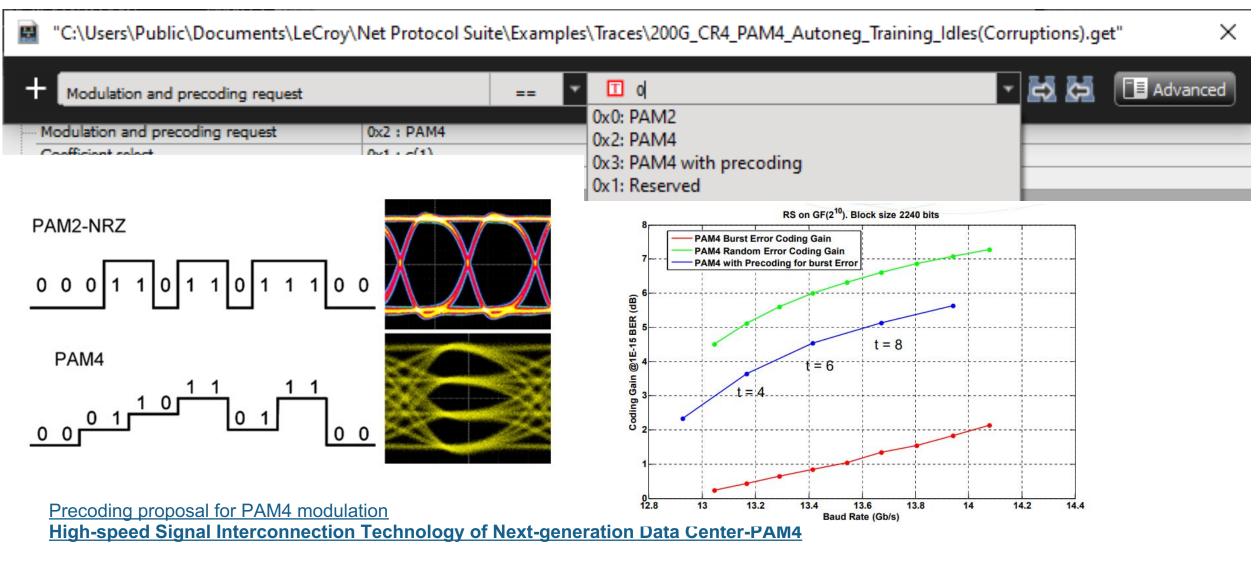



Figure 136–10—Transmit equalizer functional model

Link Training Control – Initial Condition Request

"C:\Users\Public\Documents\LeCroy\Net Protocol Suite\Examples\Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Corruptions).get"


Initial condition request			0	- 🛃 🛤 🔳 Advanced
			0x0: Individual coefficient control	
Initial condition request	0x0 : Individual coeffici	ent control	Ox1: Preset 1	
Modulation and precoding request	0x2 : PAM4		0x2: Preset 2	
Coefficient select	0x1 : c(1)		0x3: Preset 3	

X

ICR	c(-2)	c(-1)	c(0)	c(1)	Comment
Preset 1	0	0	1	0	Default
Preset 2	0	-0.15	.75	-0.1	Most common
Preset 3	0	-0.25	.75	0	

Link Training Control – Modulation and Precoding Request



Link Training Control – Coefficient Select

х "C:\Users\Public\Documents\LeCroy\Net Protocol Suite\Examples\Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Corruptions).get" 무 - 5 ■ Advanced 🔳 o Coefficient select == 0x7: c(-1) $0 \times 1 : c(1)$ Coefficient select 0x6: c(-2) Coefficient request 0x0 : Hold 0x0: c(0) Status Report Field 0x8A08 0x1: c(1) Receiver Ready 0v1 · Completed

- Specifies the coefficient that is to be modified as defined in the request
- Presets are primarily sent to c(0) which updates all coefficients

Link Training Control – Coefficient Request

C:\Users\Public\Documents\LeCroy\Net Protocol Suite\Examples\Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Corruptions).get"

Coefficient request		==	▼ □ 0	🔺 🛃 💭 🔳 Advanced
			0x2: Decrement	
Coefficient request	0x0 : Hold		0x0: Hold	
Status Report Field	0x8A08		0x1: Increment	
···· Receiver Ready	0x1 : Completed		0x3: No equalization	
Modulation and precoding status	0v2 · DAM4			

 \times

- Hold Don't change the selected coefficient
- Increment Increment the selected coefficient by:
 - between 0.005 and 0.05 for -1, 0, 1 coefficients
 - between 0.005 and 0.025 for -2 coefficient
- Decrement Decrement the selected coefficient by:
 - between 0.005 and 0.05 for -1, 0, 1 coefficients
 - between 0.005 and 0.025 for -2 coefficient
- No equalization Preset 1 or set to zero

Link Training Status – Receiver Ready

"C:\Users\Public\Documents\LeCroy\Net Protocol Suite\Examples\Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Corruptions).get" ×

 +
 Receiver Ready
 ==
 Image: Online Completed Ox1: Completed Ox0: Continue

 Modulation and precoding status
 0x2: PAM4

• Link training is complete for this lane and direction

Link Training Status – Parity

P	"C:\Users\Public\Documents\LeCroy\N	let Protocol Suite\Ex	amples\`	Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Co	ruptions).ge	:t" ×
+	Parity == 00	¥ =:	- 1	0x00	5	Advanced
	Parity	0x0				
R	"C:\Users\Public\Documents\LeCroy\N	let Protocol Suite\Exa	amples\"	Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Cor	ruptions).ge	t" ×
+	Parity == 01	▼ ==	-	0x01	ici ici	Advanced
	Parity	0x1				

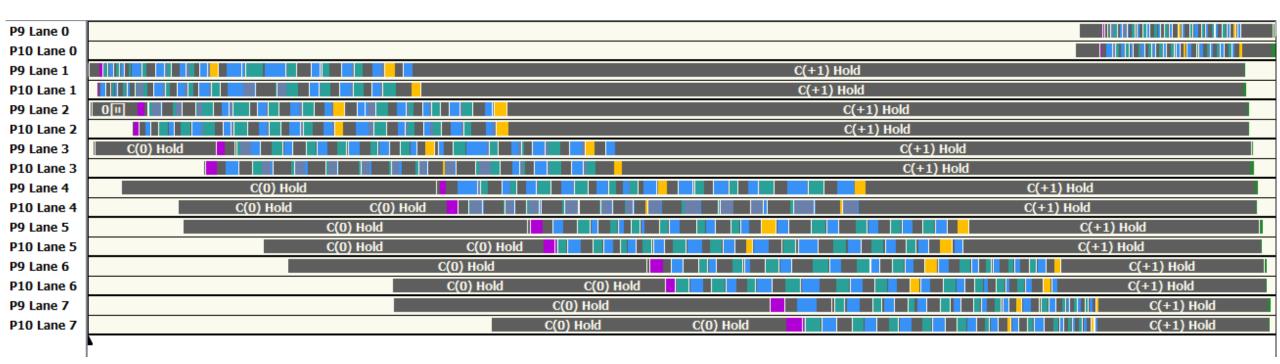
Even parity bit:

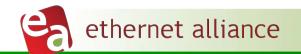
"The parity bit is calculated based on the other bits in the control field and status field to create even parity for these fields. Even parity ensures that the transmitted control and status fields (see 136.8.11.1.2) are DC balanced. This field is ignored on receipt. "

Link Training Status – Coefficient Select Echo

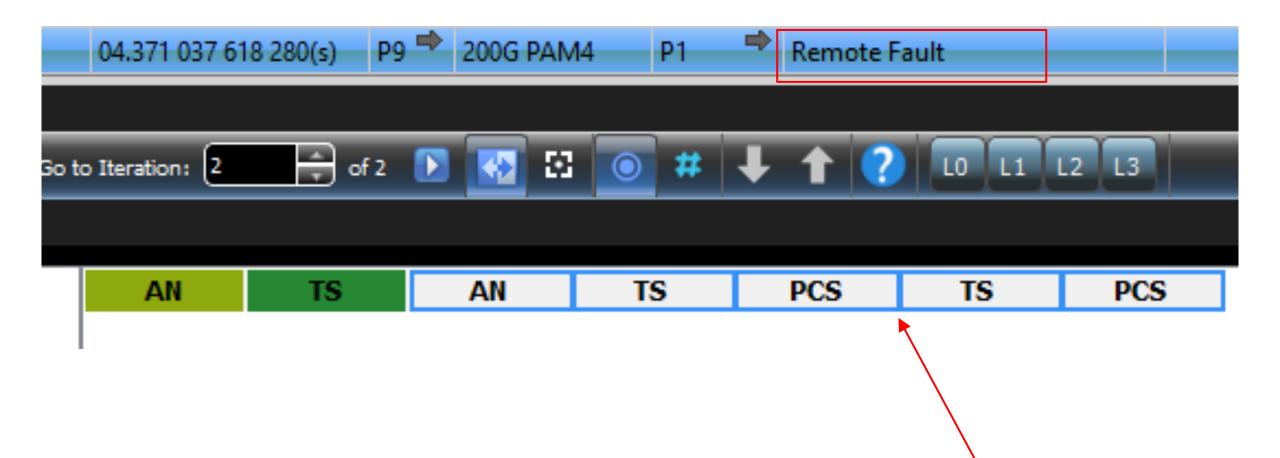
	C:\Users\Public\Documents\LeCroy\Net Protocol Suite\Examples\Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Corruptions).get"						
+	Coefficient select echo	== *	🔟 o	- 🛃 🛃 🔳 Advanced			
	Coefficient select echo	and the second s	0x7: c(-1) 0x6: c(-2)				
	Coefficient status	0x3 : Coefficient not supported					
			0x1: c(1)				

Specifies which coefficient the Coefficient Status pertains to.

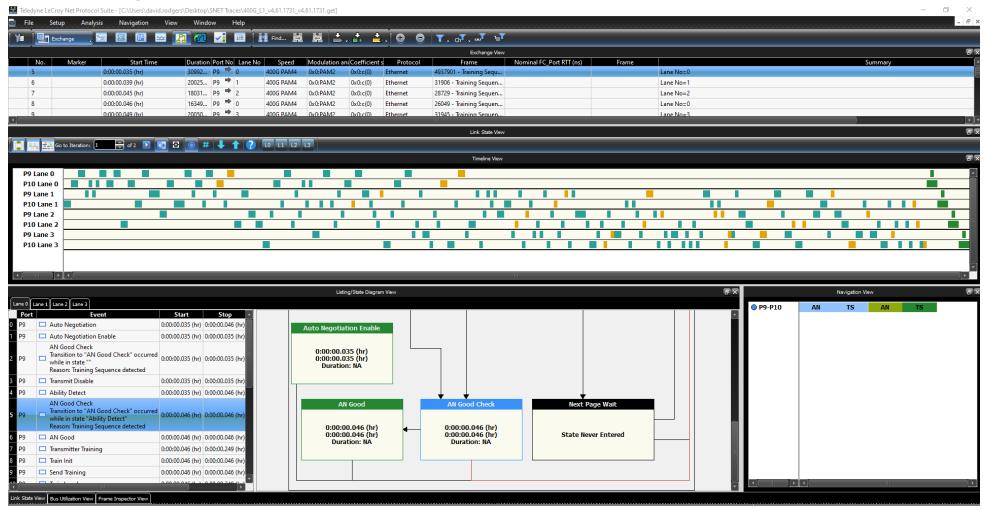

Link Training Status – Coefficient Status


"C:\Users\Public\Documents\LeCroy\Net Protocol Suite\Examples\Traces\200G_CR4_PAM4_Autoneg_Training_Idles(Corruptions).get"								
Advanced								

- Not updated the coefficient has not been updated to the requested value
- Updated (0x1) the coefficient has been updated to the requested value
- Coefficient at limit A minimum (decrement) or a maximum (increment) has been reached. The requested won't action will not be applied
- Coefficient not supported the device does not support the selected coefficient (note I have seen coefficient requests for unknown coefficients)
- Equalization limit Adjusting the coefficient would exceed the transmitters voltage limits. The coefficient has not yet reached its limit so if other coefficients are changed then it could be updated
- Coefficient at limit and equalization at limit Adjusting the coefficient would exceed the transmitters voltage limits and the coefficient's limits as well.



What it looks like over time



AN/LT to PCS

Link Layer Validation

What to look for in Link Training

- Did Link Training occur?
- Was it sent in both directions?
- Did Link Training end with the 'Complete' on all lanes and directions?
- Did the link progress to PCS (Physical Coding Sublayer)?
- Are there 'Remote Faults'?
- Make sure there aren't multiple iterations of AN/LT (unless they were specifically caused for testing)

Consistent Link Training?


Completed Comparison

Port 9

Lane	c(-2)	c(-1)	c(0)	c(1)	Presets and limits
0	0.0000(13)	-0.0275(1) 0.0000(12)	0.9725(2) 0.6150(1) 1.0000(10)	0.0000(13)	preset 1 on c(0) (12) N/A(1)
1	0.0000(13)	0.0000(13)	1.0000(13)	0.0000(13)	preset 1 on c(0) (12) N/A(1)
2	0.0000(13)	0.0000(13)	1.0000(13)	-0.0275(1) 0.0000(12)	preset 1 on c(0) (10) N/A(3)
3	0.0000(13)	-0.0275(1) 0.0000(12)	1.0000(13)	-0.0275(1) 0.0000(12)	preset 1 on c(0) (12) N/A(1)

Port 10

Lane	c(-2)	c(-1)	c(0)	c(1)	Presets and limits
0	0.0000(13)	0.0000(13)	1.0000(13)	0.0000(13)	preset 1 on c(0) (12) N/A(1)
1	0.0000(13)	0.0000(13)	0.9725(1) 1.0000(12)	0.0000(13)	preset 1 on c(0) (12) N/A(1)
2	0.0000(13)	-0.0275(3) 0.0000(10)	0.9450(1) 1.0000(12)	0.0000(13)	preset 1 on c(0) (12) N/A(1)
3	0.0000(13)	0.0000(13)	0.9725(1) 1.0000(12)	-0.0275(1) 0.0000(12)	preset 1 on c(0) (12) N/A(1)

Summary

- Reliable Link Training is key to making communication reliable over copper
- Testing with proper visibility is needed to ensure the training is working as expected
- It is important that all frames with errors are ignored
- Even after the link is trained, it is important to make sure it remains stable

Link Establishment

Sam Johnson, HSN Co-Subcommittee Chair, Intel

www.ethernetalliance.org

Link Establishment

Link can only be established if both end points are in a compatible configuration

- Auto-negotiation resolves PHY parameters including link speed, lane count, and FEC mode
- Static configurations must match exactly

Proprietary link establishment methodologies

- Automatic media-based static configuration
- Loop of supported configurations
- Received signal detection
- Manual configuration

Port Configuration Options: Breakout modes

Assessing Link Health

Specification requirement for PAM-4 link health: Frame Loss Ratio (FLR)

- Previous standards used BER requirements, usually 1x10-12
- With every link protected by FEC and ~6dB coding gain, standards change to FLR
- 6.2x10⁻¹⁰ for 64-octet frames with min IPG for 50/100GbE
- 6.2x10⁻¹¹ for 200/400GbE
- FLR requirement expected to be met with raw BER of 2.4x10⁻⁴ for 50Gb per lane.

Pre-FEC error ratio and FEC codeword bin counters can give assessment of link health and margin

No spec for receiver statistics (eye height, eye opening)

Time to Link heavily impacted by link establishment methodology

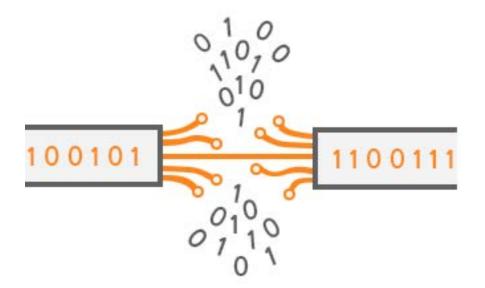
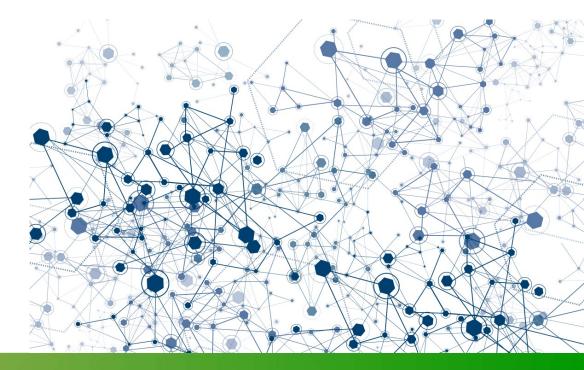
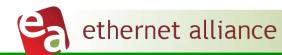


Photo Source: https://www.vyopta.com/blog/video-conferencing/understanding-packet-loss/

Interop Challenges and Common Issues

Sam Johnson, HSN Co-Subcommittee Chair, Intel


www.ethernetalliance.org


Ethernet Interoperability

Definition: The ability of devices from different vendors to work together seamlessly in order to establish a reliable data connection for the passing of Ethernet traffic

Recipe for success:

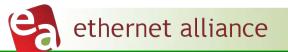
- Technology compatibility
- Specification compliance of devices and medium
- Device configuration
- Testing, testing, testing


The Importance of Interoperability Testing

Interop testing **during** product development:

- Set product development direction
- Solve problems before they are found in the field
- Improve product robustness

Interop testing **after** product development:

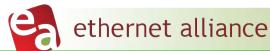

- New products to market can cause increased issues
- Product use-cases expand over time
- Product updates can result in very different behavior

Interop Challenges: Spec vs. Ecosystem

- Legacy speed support
- Conflicting link establishment methods
- Evolving standards, especially for modules
- Consortium vs. Standards compatibility Prevalence of non-compliant device and configurations in deployment, for example:
 - Auto Negotiation disabled on DACs
 - Lack of RS-FEC support in legacy devices
 - Better-than-spec devices
 - Proprietary technologies
 - Compliance with pre-ratified standards

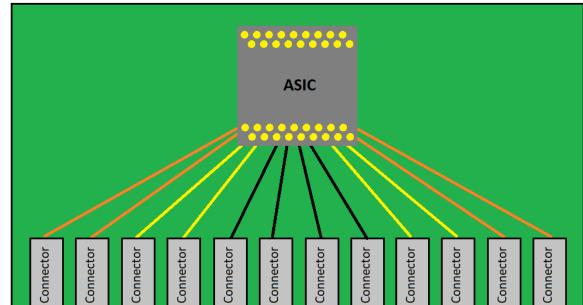
Common Issues: System vs. Cables/Modules

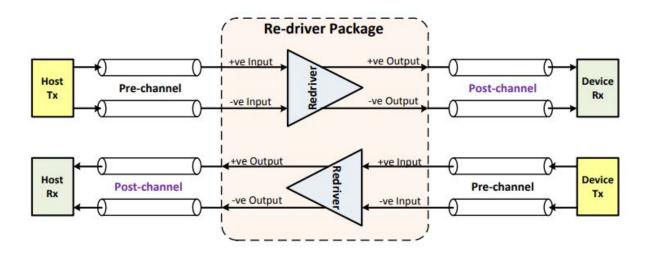
Module EEPROM accuracy, lack of compliance enforcement


- Impacts media identification: type, capabilities, power, etc.
- Date code differences

Module control, communication and timing behavior System to system implementation variation Module insertion and squelching Various specifications: SFF vs. CMIS

Photo sources: <u>https://advance.technology/product/juniper-networks-inp-asfp-aoclc-30m-compatible-40g-to-8xlc-breakout-30m/</u>, <u>https://www.fs.com/products/134656.html</u>, <u>https://www.fs.com/products/75603.html</u>, <u>https://www.sweetwater.com/store/detail/E5350--linksys-e5350-802.11ac-wireless-router</u>, <u>https://www.onlogic.com/mk100b-54/</u>


System Design Challenges


Platform form factor and routing implications

- Switches, outside port routes
- ASICs with integrated Ethernet

Repeaters/External PHYs used to extend channel reach

- Redrivers: noise sensitivity, electrical compliance, device location impact
- Retimers: link training interference, protocol awareness requirement

Interop Plugfest Value

Sam Johnson, HSN Subcommittee Co-Chair, Intel

www.ethernetalliance.org

Ethernet Alliance Plugfest Opportunity

Multi-vendor event open to EA members to test product interoperability and conformance methodologies


• Participation from System, T&M and component vendors

Emphasize testing on **latest technologies** as well as interop with **legacy speeds** and the established ecosystem

- Opportunity to evaluate and interoperate with pre-release products
- Testing includes system to system and system to module interop testing, evaluating link establishment and link health reliability
- Establish BKMs for test and measurement methodologies
- Allow time for debug and issue resolution Receive vendor specific and anonymized reports

Next event coming soon, May 1st 2023!

Thank you for watching!

If you have any questions or comments, please email admin@ethernetalliance.org

