Ethernet in Design (100Gb/s Lane Rate)

Moderator:
Kae Dube, Ethernet Operations Manager, UNH-InterOperability Lab

Presenters:
Nathan Tracy, Technologist, System Architecture Team, TE Connectivity
Adithya Muralidharan, Staff Applications Engineer, Intel
John Calvin, Senior Strategic Planner, Keysight
Pavel Zivny, Domain Expert, Tektronix

June, 7 2023
The views expressed in this panel presentation are those of the presenters and not of the Ethernet Alliance.
3-Part Series

on demand ➔ Webinar 1: Ethernet in the Field (50Gb/s Lane Rate)

Today Webinar 2: Ethernet in Design (100Gb/s Lane Rate)

Webinar 3: Ethernet in the Future (200Gb/s Lane Rate)
About Ethernet Alliance

Kae Dube, Ethernet Operations Manager, UNH-InterOperability Lab
The Ethernet Alliance
Global Community of End Users, System Vendors, Component Suppliers & Academia

Our Mission

• **To promote** industry awareness, acceptance and advancement of technology and products based on, or dependent upon, both existing and emerging IEEE 802 Ethernet standards and their management.

• **To accelerate industry adoption** and remove barriers to market entry by providing a cohesive, market-responsive, industry voice.

• Provide resources to establish and **demonstrate multi-vendor interoperability**.
Ethernet Alliance Strategy
Expanding the Ethernet Ecosystem, Supporting Ethernet Development

- **Facilitate interoperability testing & assurance**
 - Industry Plug fests supporting member and technology initiatives
 - PoE Certification Program

- **Global outreach and collaborative interaction with other industry organizations**
 - Worldwide Membership
 - Multiple SIGs, applications and MSAs
 - Industry consensus building

- **Thought Leadership**
 - EA-hosted Technology Exploration Forums (TEFs)
 - Technology and standards incubation

- **Promotion of Ethernet**
 - Media and industry analysts outreach
 - Education
 - Marketing (trade shows & panel presentations, white papers, blogs & social media)
2023 Ethernet Roadmap

- **Digital copies & graphics** published via Alliance’s website
- **Print copies** available at OFC 2023 and other events this year
- Included in the “Ethernet Alliance in the Box” for members
- Digital version **regularly updated** to capture latest advancements
How Ethernet is Enabling the Next Generation; 100Gbps Lane Rate

Nathan Tracy, Technologist, System Architecture Team, TE Connectivity
Ethernet 100Gbps Lane Rate Enablers

IEEE's 802.3 Ethernet Standard has developed a number of new Clauses to enable and leverage 100Gbps signaling per lane rate to meet next generation networking needs:

802.3ck: Establishes the electrical specifications and options (more details to follow)

802.3ct: Establishes the DWDM optical specifications for applications with reach of at least 80km

802.3cu: Establishes the single mode 100Gbps wavelength optical specifications and options
 - 100GBASE-DR (2m to 200m), 100GBASE-FR1 (2m to 2km) and 100GBASE-LR1 (2m to 10km)
 - 400GBASE-FR4 (2m to 2km) and 400GBASE-LR4-6 (2m to 6km), both based on CWDM

802.3db: Establishes the multimode short reach optical specifications and options
 - 100GBASE-VR1, 200GBASE-VR2 and 400GBASE-VR4 over 1, 2, or 4 pairs of multimode fiber up to at least 30m on OM3, 50m on OM4 and 50m on OM5
 - 100GBASE-SR1, 200GBASE-SR2 and 400GBASE-SR4 over 1, 2, or 4 pairs of multimode fiber up to at least 60m on OM3, 100m on OM4 and 100m on OM5
802.3ck: Establishes the 100Gbps Lane Rate
Electrical Specifications

Based on PAM4 (pulse amplitude modulation, 4 level) signaling
Defines solutions for 100Gbps, 200Gbps (2 x100G), and 400Gbps (4x100G) signaling interfaces
Leverages Reed-Solomon Forward Error Correction (RS-FEC) for all links

Electrical Specifications:

<table>
<thead>
<tr>
<th>Link Type</th>
<th>Standard</th>
<th># of Lanes / Date Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip To Chip</td>
<td>100GAUI-1 C2C, 200GAUI-2 C2C, 400GAUI-4 C2C</td>
<td>1x100Gbps, 2x100Gbps, 4x100Gbps</td>
</tr>
<tr>
<td>Chip to Module</td>
<td>100GAUI-1 C2M, 200GAUI-2 C2M, 400GAUI-4 C2M</td>
<td>1x100Gbps, 2x100Gbps, 4x100Gbps</td>
</tr>
<tr>
<td>Copper Cable</td>
<td>100GBASE-CR1, 200GBASE-CR2, 400GBASE-CR4</td>
<td>1x100Gbps, 2x100Gbps, 4x100Gbps</td>
</tr>
<tr>
<td>Backplane</td>
<td>100GBASE-KR1, 200GBASE-KR2, 400GBASE-KR4</td>
<td>1x100Gbps, 2x100Gbps, 4x100Gbps</td>
</tr>
</tbody>
</table>
Chip to Chip and Chip to Module
Both C2C and C2M define 100Gbps, 200Gbps, & 400Gbps

Chip to Chip (C2C):
- Enables approx. 25cm of reach with PCB traces (based on recommended 20dB Max channel loss)

Chip to Module (C2M):
- Enables the classic pluggable optical transceiver architecture
- Channel loss of 16dB, Host loss up to 11.9dB

NOTE—The number of lanes \(n \) is equal to 1 for 100GAIU-1, 2 for 200GAIU-2, and 4 for 400GAIU-4.
Compliance Test Board Methodology
(Common test boards for C2M and CR applications)

100GBASE-CR1, 200GBASE-CR2, or 400GBASE-CR4 Link

Copper Cable Implementation Application

Copper Cable Test Application
(only module loss and host loss changes for C2M)

Cable assembly, host and test fixture insertion loss at 26.56Ghz
Copper Cable

Passive copper cables are a critical industry building block providing low power, low latency and low cost. Often used for “switch to server” links as well as “aggregation switch” links, i.e., high volume applications.

Formfactors:

- SFP (1 channel): Enables 100GBASE-CR1
- SFP-DD and DSFP (2 channels): Enables up to 200GBASE-CR2
- QSFP (4 channels): Enables up to 400GBASE-CR4
- QSFP-DD* & OSFP* (8 channels): Enables up to 2x 400GBASE-CR4

Cable assembly loss is 19.75dB at 26.5Ghz enabling a cable reach of 2 meters. This uses the same test fixtures as Chip to Module.

Host loss up to 6.875dB

Second generation silicon is enabling longer cable reaches.

*800GBASE-CR8 is in the process of being developed in IEEE P802.3df project
Copper Cable 1x, 2x, 4x 100Gbps

100GBASE-CR1 Media Dependent Interface (MDI):
- SFP Formfactor: a single port (or PMD)
- SFP-DD or DSFP Formfactors: two ports (or PMDs)
- QSFP Formfactor: four ports (or PMDs)
- QSFP-DD or OSFP Formfactors: Eight ports (or PMDs)

200GBASE-CR2 Media Dependent Interface (MDI):
- SFP-DD or DSFP Formfactor: a single port (or PMD)
- QSFP Formfactor: two ports (or PMDs)
- QSFP-DD or OSFP Formfactors: four ports (or PMDs)

400GBASE-CR4 Media Dependent Interface (MDI):
- QSFP Formfactor: a single port (or PMD)
- QSFP-DD or OSFP Formfactors: two ports (or PMDs)

Breakout cable assembly examples:
Backplane

- Max channel loss is 28dB at 26.5Ghz, “ball to ball”
Summary

- IEEE specifications are published to enable electrical and optical interfaces over a wide range of interfaces / media

- Allows optimization of implementations according to power, reach, etc. market demands, while leveraging the IEEE benefit of “plug and play” interoperability

- 100Gbps lane rates are challenging and careful attention to design detail is more important that it has ever been
Ethernet in Design (100Gb/s Lane Rate)

Hardware Measurements

Adithya Muralidharan
Staff Applications Engineer | Programmable Solutions Group
Intel
June 7, 2023
Introduction

• Demonstration results of Ethernet variants at 53 GBd i.e., 100 Gb/s per lane showing
 - Bit Error Rate (BER) performance
 - Forward Error Correction (FEC) statistics
 - Ethernet Packet and Throughput Tests (400GE and 800GE)
• Across different media types such as
 - Backplane/Channel Evaluation Board
 - Direct Attach Copper (DAC)
 - Optical fiber
• Including different form factors
 - Quad Small Form-factor Pluggable Double Density (QSFP-DD)
 - Octal Small Form-factor Pluggable (OSFP)
Focus Areas

- 802.3 ck Electrical Measurements
- 400GBASE-CR4 Hardware Measurements
- 800GAUI-8 Hardware Measurements
802.3 ck Electrical Measurements – Test Setup

- Intel Agilex F-Tile FHT Transceiver
 - 106.25 Gb/s (PAM4) Line Rate
 - QPRBS31 Pattern
- Channel Evaluation Board
 - Trace lengths ranging from 1.2 to 10 inches (up to 28 dB end-to-end loss)
- Connector Form Factor
 - OSFP
802.3 ck Electrical Measurements – Channel Model

- Agilex F-Tile FHT Transceiver
 - TX: 2.3778 dB
 - RX: 2.2324 dB
- OSFP to SMA Adapter
 - 1.9499 dB
- SMA Cable
 - 2.2832 dB

Nyquist @ 26.5625 GHz
802.3 ck Electrical Measurements – Hardware Results

<table>
<thead>
<tr>
<th>Trace Length (in.)</th>
<th>End-to-End Insertion Loss (dB) @ 106.25 GHz (Nyquist Rate: 26.5625 GHz)</th>
<th>Pre-FEC BER</th>
<th>Post-FEC BER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>15.3264</td>
<td>6.73E-12</td>
<td>0</td>
</tr>
<tr>
<td>2.4</td>
<td>17.0664</td>
<td>4.52E-12</td>
<td>0</td>
</tr>
<tr>
<td>4.8</td>
<td>21.1464</td>
<td>1.77E-11</td>
<td>0</td>
</tr>
<tr>
<td>5.9</td>
<td>23.0464</td>
<td>5.30E-10</td>
<td>0</td>
</tr>
<tr>
<td>7.1</td>
<td>25.0764</td>
<td>7.75E-09</td>
<td>0</td>
</tr>
<tr>
<td>8.3</td>
<td>26.3964</td>
<td>5.72E-08</td>
<td>0</td>
</tr>
<tr>
<td>9.5</td>
<td>27.2964</td>
<td>3.57E-07</td>
<td>4.25E-12</td>
</tr>
</tbody>
</table>

Note: BER values recorded 10 minutes after starting transmission.

Data collected with Early Sample (ES) Silicon. Full characterization pending.

Things to Monitor
- As Insertion Loss increases, bit error rate increases
- There is an insertion loss point where FEC correctable errors starts to kick in
400GBASE-CR4 – Test Setup

Board 1

- FPGA Board to Board Setup with 1-meter QSFP-DD DAC Cable
- 400G Ethernet consisting of four lanes with each lane running at 106.25 Gbps
- Reed Solomon (544, 514) Forward Error Correction Scheme

Board 2

1m DAC Cable
QSFP-DD Single Port
400GBASE-CR4— Hardware Results (1)

Board 1 –PHY Stats

Things to Monitor:
- PHY Stats are in good condition
- FEC uncorrectable codewords is 0
- RS (544, 514) FEC can correct up to 15 symbol errors

Data collected with Early Sample (ES) Silicon. Full characterization pending.
Things to Monitor:
- Random Length Packets Testing
- TX stats on board 1 matches with RX stats on board 2
- Similarly, TX stats on board 2 matches with RX stats on board 1

<table>
<thead>
<tr>
<th>Statistics Counters Names</th>
<th>Board 1 – MAC Stats</th>
<th>Board 2 – MAC Stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frames < 64 bytes with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Over sized frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Packets with FCS errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frames >= 64 bytes with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multicast data frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast data frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unicast data frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multicast control frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast control frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unicast control frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pause frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64 Byte Frames (Includes CRC field)</td>
<td>241186581</td>
<td>6912750224</td>
</tr>
<tr>
<td>65 - 127 Byte Frames</td>
<td>1291977635</td>
<td>721196581</td>
</tr>
<tr>
<td>128 - 255 Byte Frames</td>
<td>480791054</td>
<td>1201977635</td>
</tr>
<tr>
<td>256 - 511 Byte Frames</td>
<td>26395527</td>
<td>490791054</td>
</tr>
<tr>
<td>512 - 1023 Byte Frames</td>
<td>1201977635</td>
<td>24935527</td>
</tr>
<tr>
<td>Over sized Frames (> MAX Size)</td>
<td>3646328432</td>
<td>3646328432</td>
</tr>
<tr>
<td>Multicast data frames without error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast data frames without error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unicast data frames without error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Multicast control frames without error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Broadcast control frames without error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unicast control frames without error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pause frames without error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Run Packets (undersized)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Number of Frame Starts</td>
<td>241186581</td>
<td>721196581</td>
</tr>
<tr>
<td>Number of Length error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PFC frames with CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PFC frames without CRC error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Payload data and padding octets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Frame Octets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Malformed packets</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Packets dropped due to error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bad LIT field</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
800GAUI-8 Test Setup

- FPGA Dev Kit connected with Ethernet Protocol Tester using:
 - 800G-DR8 optical module and 3-meter optical fiber
 - 800G Ethernet consisting of eight lanes from 2X FTILEs with each lane running at 106.25 Gbps
800GAUI-8 Hardware Results (1)

FPGA Stats

Things to Monitor
- PHY/PCS Stats are in good condition
- FEC uncorrectable codewords is 0
- 800G Traffic running at
 - 100% Throughput on both TX and RX
 - 1518 Byte packet size
800GAUI-8 Hardware Results (2)

Tester Stats

Things to Monitor
- Tester showing 800GE link up status
- Tester running 800GE traffic at 100% throughput
Notices & Disclaimers

• Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

• Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. No product or component can be absolutely secure.

• Your costs and results may vary.

• Intel technologies may require enabled hardware, software or service activation.

• © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
Ethernet in Design (100Gb/s Lane Rate)
Clause 162, system validation challenges at TP2

John Calvin | June, 7 2023
TP2 Loss Related Challenges

The standards process recognized the challenges with TP2 and incorporated a couple useful changes.

- J3u was increased 10mUI to 125mUI to allow for higher loss packages and general challenges with performing 12Edge jitter operations after this much loss.
- J3u03 was added at the old J3u spec value of 115mUI. J3u03 limits the J12Edge Jitter operations to full swing (3 level transitions) which are less susceptible to SNR issues after a high loss channel.

Recommended TP0-TP2 is $6.875\text{dB} (\text{host}) + 1.6\text{dB} + 2.5\text{dB} (\text{mated connector + HCB}) = 10.975\text{dB}$

Some larger packages (45mm) TP0-TP2 losses are more inline with $4\text{dB} (\text{Package}) + 6.875 (\text{host}) + 5.8\text{dB} (\text{mated connector + HCB}) = 16.72\text{dB}$
TP2 Test Fixture loss

162B.4 Mated test fixtures

The TP2 or TP3 test fixture and the cable assembly test fixture are specified in a mated state illustrated in Figure 92–18. The mated test fixtures specifications are given below.

162B.4.1 Mated test fixtures insertion loss

The insertion loss of the mated test fixtures shall meet the values determined using Equation (162B–3) and Equation (162B–4).

\[
IL_{dd}(f) \leq IL_{dd┤MTFF}^\text{min}(f) = \begin{cases}
1.185 \cdot (0.072f + 0.007)^2 & 0.01 \leq f < 40 \\
1.915f - 60.78 & 40 \leq f \leq 50
\end{cases} \quad (162B–3)
\]

\[
IL_{dd}(f) \geq IL_{dd┤MTFF}^\text{max}(f) = 1.0225 \cdot (0.0656f + 0.164f) \\
\]

\[
\text{for } 0.01 \text{ GHz } \leq f \leq 50 \text{ GHz}
\]

Figure 162B-2 illustrates allowable test fixture SDD21 tolerances

Reference SDD21 is -6.6dB, Min is -4.8dB Max is -9.13dB

Top SDD21 illustrates an example of a conformant test fixture
Ethernet Alliance: Clause 162 validation challenges at CR's TP2

TP2 is performed with TX FIR only and a 40GHz 4'th order Bessel Thomson instrument response.

Large levels of data-dependant jitter (DDJ) are present after traversal through these loss elements and need to be compensated with any configuration of the Tx silicon's TX-FFE to achieve the lowest possible 12Edge jitter values.

No Reference Receiver equalization such as CTLE or DFE is permitted for TP2. Only TX Fir optimization is allowed.
Ethernet Alliance: Clause 162 validation challenges at CR’s TP2
From the standpoint of being able to confirm electrical interoperability of a CR Transmitter port by inserting an HCB and evaluating the signal properties, TP2 is important for system validation.

The Jitter values at TP2 are currently based on a conservative set of loss values. Under most conditions 10.975dB-15dB net loss, the current J3u value of 125mUI is attainable with a 5 tap FIR. Beyond 15dB requires careful study of advanced TX FIR capability, as margin disappears quickly.

<table>
<thead>
<tr>
<th>Total Path Loss (dB)</th>
<th>TX FIR</th>
<th>J3U (mUI)</th>
<th>JRMS (mUI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0/ 0.03/ -0.15/ 0.7/-0.08</td>
<td>75</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>-0.01/0.05/ -0.18/ 0.55/-0.21</td>
<td>120</td>
<td>16</td>
</tr>
</tbody>
</table>
Even-Odd-Jitter (EOJ) Measurements

COMBINATION OF FBAUD, PATTERN LENGTH, CRU LOOP BW

In practice, the EOJ result is impacted by a physical CDR loop BW and the pattern harmonics.

1. EOJ from DUT: CDR responds to the EOJ in the signal, is filtered by the Jitter Transfer Function (JTF) low-pass response, and moves the phase of the clock.
 - Spectral Component = Fbaud / (2*PatternLength) = 53.125 GBd/16,382 symbols = 3.24 MHz (in-band)
 - Normal distribution, increases/decreases the amplitude of the EOJ component based on phase relationships.
 - But EOJ algorithm always records the maximum of the of the 12 edges (worst case result), so EOJ result will always be increased due to the component (sub-harmonic) of EOJ that falls within the loop BW of the CDR.
 - The reference clock recovery unit (CRU) used in the measurement acts as a highpass jitter filter with a corner frequency of 4 MHz and a slope of 20 dB/decade.

Sub-Harmonics of EOJ are created based on Fbaud and Pattern Length:
 - Baud Rate: 53.125 Gbd
 - PRBS13Q Pattern Length: 8191 Symbols
 - Spectral Component = Fbaud / (2*PatternLength) = 3.24 MHz (in-band)
What can be done?

Since “Real” systems don’t have repetitive patterns that create this type of issue, it is our belief that any impairment of EOJ due to this relationship is unintended by the standard.

The physical PLL/Harmonic “interaction” effect can be mitigated if EOJ is measured with:

1. A lower CR Loop BW.
 • Allow CR loop BW to be lowered from 4 MHz to x MHz (Example: ~ 100 kHz). => Simple

2. A shorter pattern such as PRBS9Q
 • \(\frac{F_{\text{baud}}}{(2 \times \text{PatternLength})} = \frac{53.125 \text{ Gbd}}{(2 \times 511)} = 52 \text{ MHz} >> 4 \text{ MHz CR loop BW} \)

3. An instrument with an oversampled digital PLL such a Real-Time Oscilloscope

Final .3ck spec says..

(a) The test pattern is either PRBS13Q or alternatively PRBS9Q. PRBS9Q is defined in 120.5.11.2.a. Meeting the even-odd jitter requirement with only one pattern is sufficient.

(b) If the test pattern is PRBS13Q, the corner frequency of the clock recovery unit (CRU) is set to 4 MHz or to 1 MHz. Meeting the even-odd jitter requirement with only one CRU bandwidth is sufficient.
Instrument Correlation

<table>
<thead>
<tr>
<th>CR-Measurement (TP2)</th>
<th>UXR (11.50)</th>
<th>DCA (7.50)</th>
<th>Difference</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRMS (mUI)</td>
<td>24.8</td>
<td>23</td>
<td>1.8</td>
<td>Equivalent-time instruments have added advantage of 1.5 ENOB better sensitivity.</td>
</tr>
<tr>
<td>J3u (mUI)</td>
<td>170.8</td>
<td>161</td>
<td>9.8</td>
<td>Real-time instruments will always report slightly higher J3u over a Equivalent-time instrument.</td>
</tr>
<tr>
<td>EOJ (mUI)</td>
<td>31.3</td>
<td>45</td>
<td>-13.7</td>
<td>The consecutive cycle to cycle nature of EOJ favors a Real-time instrument.</td>
</tr>
<tr>
<td>RLM</td>
<td>0.961</td>
<td>0.969</td>
<td>-0.008</td>
<td>Should expect a good match with closed eye's favoring RT.</td>
</tr>
<tr>
<td>Vf (mV)</td>
<td>325</td>
<td>327</td>
<td>-2</td>
<td>How current is your calibration...</td>
</tr>
<tr>
<td>SNDR (dB)</td>
<td>33.2</td>
<td>32.9</td>
<td>0.3</td>
<td>Within normal run-to-run variances, these should be similar.</td>
</tr>
</tbody>
</table>

- Differences in the two instruments are to be expected within the confines of architectural and fidelity differences.

- In terms of which instrument is closest to the “correct value” that depends.
Summary

- The EA interoperability program is an ideal forum to evaluate both prototype and finished designs. Early exposure to the test program is highly beneficial for both Design Validation teams as well as the Test Instrumentation teams.

- Many of the 802.3ck early Systems tested have “interoperability opportunities”.

- IEEE 802.3ck electrical validation has certain tight validation margins and a “one instrument does it all” approach is unlikely to serve the best overall results. It’s ok to mix and match the instruments to get access to the breadth of best margin results.
Ethernet in Design (100Gb/s Lane Rate)

Pavel Zivny | June, 7 2023
HSN Plugfest Highlights (May 1-5, UNH-IOL)

- Alliance hosted a week-long *High Speed Networking (HSN) plugfest* at UNH
- **18 member companies** participated in this event helping to improve ecosystem interoperability with a special focus on interoperability of Ethernet devices supporting data rates of 25-800 Gb/s
- Event was also **open to non-members**
- **Blog** highlighting technical details is coming soon
- More plugfests planned for **2023**, stay tuned for details
Physical layer tests considered at plugfest 1

Electrical standards: CR ✔, AUI C2M ✔
802.3ck 100 Gb/s/lane ✔
802.3ck 50 Gb/s/lane ✔

For optical standards, see next page
Physical layer tests for future consideration for Phy measurements

Optical standards

100 Gb/s/lane SM IMDD ✓/✗
 • 50G interest? ✓/✗
 • 200 G interest? ✓/✗

100 Gb/s/lane MM IMDD (802.3db, others)
 • 50 G interest ✓/✗
Physical layer test stations
Physical layer 802.3ck fixturing

Test & Measurement vendors supplied host and module fixtures for proving the standards

CMIS (Common Management Interface Specification) and older management were used to communicated to DUTs
Physical layer test: Station setup

Plugfest setup – Tektronix station:

Two stations of 802.3ck TX Test supporting setups, each based on Tek DPO70002SX oscilloscopes
Physical layer test: CR jitter example

From IEEE 802.3 2022/12 specification
Physical layer test: compliance table example

Directly based on standards compliance characteristics, e.g.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Subclause reference</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaling rate, each lane (range)</td>
<td></td>
<td>53,125 ± 50 ppm^b</td>
<td>Gbd</td>
</tr>
<tr>
<td>Differential pk-pk voltage with Tx disabled (max)^b</td>
<td>93.8.1.3</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td>DC common-mode voltage (max)^b</td>
<td>93.8.1.3</td>
<td>1.9</td>
<td>V</td>
</tr>
<tr>
<td>AC common-mode peak-to-peak voltage (max)</td>
<td>162.9.4.4</td>
<td>30</td>
<td>mV</td>
</tr>
<tr>
<td>Low-frequency, $V_{CM,LF}$</td>
<td></td>
<td>80</td>
<td>mV</td>
</tr>
<tr>
<td>Full-band, $V_{CM,FB}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential pk-pk voltage, v_{dp} (max)^b</td>
<td>93.8.1.3</td>
<td>1200</td>
<td>mV</td>
</tr>
<tr>
<td>Effective return loss, ERL (min)</td>
<td>162.9.4.8</td>
<td>7.3</td>
<td>dB</td>
</tr>
<tr>
<td>Common-mode to common-mode return loss, RL_{cc} (min)</td>
<td>162.9.4.9</td>
<td>See Equation (162–6)</td>
<td>dB</td>
</tr>
<tr>
<td>Common-mode to differential-mode return loss, RL_{dc} (min)</td>
<td>162.9.4.10</td>
<td>See Equation (162–7)</td>
<td>dB</td>
</tr>
<tr>
<td>Transmitter steady-state voltage, v_T (min)</td>
<td>162.9.4.1.2</td>
<td>0.387</td>
<td>V</td>
</tr>
<tr>
<td>Transmitter steady-state voltage, v_T (max)</td>
<td>162.9.4.1.2</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>Linear fit pulse peak ratio, R_{peak}</td>
<td>162.9.4.1.2</td>
<td>0.397</td>
<td>—</td>
</tr>
<tr>
<td>Level separation mismatch ratio R_{LM} (min)</td>
<td>162.9.4.2</td>
<td>0.95</td>
<td>—</td>
</tr>
<tr>
<td>Transmitter output waveform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absolute value of step size for all taps (min)</td>
<td>162.9.4.1.4</td>
<td>0.005</td>
<td>—</td>
</tr>
<tr>
<td>absolute value of step size for all taps (max)</td>
<td>162.9.4.1.4</td>
<td>0.025</td>
<td>—</td>
</tr>
<tr>
<td>value at minimum state for $c(-3)$ (max)</td>
<td>162.9.4.1.5</td>
<td>-0.06</td>
<td>—</td>
</tr>
<tr>
<td>value at maximum state for $c(-2)$ (min)</td>
<td>162.9.4.1.5</td>
<td>0.12</td>
<td>—</td>
</tr>
<tr>
<td>value at minimum state for $c(-1)$ (max)</td>
<td>162.9.4.1.5</td>
<td>-0.34</td>
<td>—</td>
</tr>
<tr>
<td>value at minimum state for $c(0)$ (max)</td>
<td>162.9.4.1.5</td>
<td>0.5</td>
<td>—</td>
</tr>
<tr>
<td>value at minimum state for $c(1)$ (max)</td>
<td>162.9.4.1.5</td>
<td>-0.2</td>
<td>—</td>
</tr>
</tbody>
</table>

Partial list only, see next section
Physical layer test: CR output jitter compliance

IEEE 802.3ck CR jitter specification:
Physical Medium Dependent (PMD) sublayer and baseband medium, type 100GBASE-CR1, 200GBASE-CR2, and 400GBASE-CR4 are a good example of the jitter measurements in the standard.

162.9.4.7 Output jitter specification, Table 162–11—Summary of transmitter specifications at TP2

<table>
<thead>
<tr>
<th>Output jitter (max)</th>
<th>162.9.4.7</th>
<th>UI</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{RMS}</td>
<td>0.023</td>
<td>UI</td>
</tr>
<tr>
<td>J_{3u03}</td>
<td>0.115</td>
<td>UI</td>
</tr>
<tr>
<td>J_{3u}</td>
<td>0.125</td>
<td>UI</td>
</tr>
<tr>
<td>Even-odd jitter, pk-pk</td>
<td>0.025</td>
<td>UI</td>
</tr>
</tbody>
</table>

Where both the J_{3u} and Even-odd jitter, pk-pk are different from previous versions of the standard.
Let’s look at the differences…
J3u, J3u\textsubscript{03}, J

Per IEEE 802.3, J3u is calculated using the measurement method for J4u (see 120D.3.1.8.1), except that J3u is defined as the time interval that includes all but 10–3 of \(f_J(t)\), from the 0.05th to the 99.95th percentile of \(f_J(t)\). J3u\textsubscript{03} is calculated the same way as J3u except that the jitter calculation uses only transitions R03 and F30 in Table 162–13.

Why does the standard define both the J3u and the J3u\textsubscript{03} as mandatory?

Even Odd jitter: Even-odd jitter EOJ is the maximum of the 12 measurements of even odd jitter. EOJ is one of the few measurements that can be measured with the standard pattern PRBS13Q, or with a shorter PRBS9Q pattern. Additionally for PRBS13Q the clock recovery PLL Loop bandwidth can be lowered to 1 MHz.

Why does the standard allow different patterns and even PLL loop bandwidth?

The reason behind these changes is that caution needs to be exercised with the pattern length duration approaching the PLL loop bandwidth time constant.

The precautions of the standard were reasonable: the J3u and J3u\textsubscript{03} measurements correlated reasonably well. The DUTs struggle with EOJ measurement in some cases, and additional (shorter) pattern is welcome there.
Future of the plugfest, feedback

- The 2023/H1 plugfest was aligned with an InfiniBand™ plugfest. As Ethernet and IB / RoCE share similar physical layer a further future cooperation is being considered by both parties.

- The plugfest was well attended and generated good feedback. It is our intend to offer future plugfests, e.g. in 2024/H1, perhaps also in 2023/H2.
Thank you for watching!

If you have any questions or comments, please email admin@ethernetalliance.org

@ethernetalliance
@EthernetAllianc
Ethernet Alliance